КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методика обучения. И геометрических фигур на две и четыре равные части
Наглядный материал И геометрических фигур на две и четыре равные части Методика обучения делению предметов
Замечание: задача относится сразу к трем разделам: «Количество» — определяется количество частей (понятие дроби); «Величина» — сравниваются по размеру части и целое, части между собой; «Форма» — делятся на части геометрические фигуры и определяется форма частей. Реальные объемные предметы: яблоко, хлеб, торт и др. Реальные плоские предметы четкой знакомой формы: лента, блин, лист бумаги и др. Модели геометрических фигур: квадрат, круг (рис. 33), прямоугольник и др. Рис. 33 Содержание работы: — В старшей или подготовительной группе начинаем обучение с объемных предметов, затем делим на части плоские предметы ярко выраженной формы, потом рассматриваем геометрические фигуры. — Сначала учим делить на 2, затем на 4 равные части. — Учим называть форму частей, сравнивать по размеру части и целое, части между собой. — Знакомим с отношением: чем больше предмет, тем больше его часть. — Учим составлять из частей целое. Фрагмент 1: — У Лены одно яблоко. Пришел Миша. Как быть? — Разделим яблоко пополам. — Сколько получилось частей? (Две.) — Какие части между собой? (Равные, одинаковые.) — Как можно назвать каждую часть? (Половина.) — Сравните часть и целое между собой. Фрагмент 2: — Вале подарили 1 ленточку, а у нее 2 косички. Как быть? — Сложим ленточку пополам. Подравняем уголки, сделаем линию сгиба и разрежем. — Сколько частей получилось? — Как называется одна часть? — Какие части между собой? — Что длиннее — целая лента или ее половина? Что короче? Аналогичная работа на раздаточном материале. Учим делить на две равные части (пополам) полоски бумаги прямоугольной формы: правильно складывать так, чтобы уголки совпали, делать линию сгиба, разрезать по ней. Задаем аналогичные вопросы на закрепление. Фрагмент 3: — Что это? (Квадрат.) — Что вы про него знаете? (У квадрата 4 угла, 4 равные стороны.) — Посмотрите, какие фигуры я из него сделаю. Воспитатель соединяет противоположные углы квадрата, перегибает его по диагонали, разрезает по линии сгиба и делает два треугольника. Все действия необходимо подробно проговаривать. — Какие геометрические фигуры получились? (Треугольники.) — Что вы знаете про треугольник? (У треугольника 3 стороны, 3 угла.) — Сколько получилось частей? (Две.) — Какие они между собой? (Равные.) — Как по другому можно сложить квадрат, чтобы получились другие фигуры? Воспитатель выслушивает ответы и делает из квадрата два прямоугольника. После обсуждения проводится аналогичная работа с раздаточным материалом. Фрагмент 4: — Что это? (Круг.) — Как его разделить на 4 равные части? (Сначала круг делим пополам, потом каждую половину еще пополам.) — Сколько получилось частей? — Какие они между собой? (Равные.) — Одну часть можно назвать «четверть». Повторите. — Сравните целое и четверть. — Сравните половину и четверть. — Сравните две четверти и половину. — … Увеличение и уменьшение чисел. Решение практических задач Задачи на увеличение (уменьшение) числа на один в процессе непосредственного практического действия доступны пониманию детьми четвертого года жизни. Е. И. Тихеева советовала решать «бытовые» задачи с детьми этого возраста. Педагог обращает внимание детей на увеличение количества игрушек, материалов и просит выразить в действии и речи изменение: чего стало больше (меньше), на сколько, сколько всего и т. д. В старшем дошкольном возрасте (5—6 лет) арифметические задачи (на сложение и вычитание) используются с целью подведения детей к простым вычислениям, практикования в применении знаний о составе чисел из двух меньших чисел при выполнении действий сложения и вычитания. Условия задач, как правило, отражают содержание игровых и бытовых ситуаций детской жизни. Решить задачу означает понять связи, которые даны в условии (содержательные и числовые), а также связи между данными задачи и искомым. Понимание этих связей определяет выбор арифметического действия. Установив эти связи, ребенок довольно легко приходит к пониманию смысла арифметических действий и значений понятий прибавить, вычесть, получится, останется. Решая задачи, дети овладевают умением находить зависимости величин. Вместе с тем задачи являются одним из средств развития у детей логического мышления, смекалки, сообразительности. В работе с задачами совершенствуются умения проводить анализ и синтез, обобщать и конкретизировать, раскрывать основное, выделять главное в тексте задачи и отбрасывать несущественное, второстепенное. Дошкольникам свойственно своеобразное понимание сущности арифметической задачи, отраженное как в специальной литературе, так и в художественной. В педагогике этот вопрос изучался А. М. Леушиной, Е. А. Тархановой, Н. И. Непомнящей, Л. П. Клюевой и др. Детям свойственно понимать задачу как рассказ, историю, загадку, ситуацию и игнорировать числовые данные. Текст задачи дети трактуют произвольно, преобразуют его по своему усмотрению. Часто вопрос задачи заменяют ответом-решением. Е. А. Тарханова выяснила, что дети понимают сущность арифметического действия по ассоциации его с жизненным: прибавили — прибежали, отняли — улетели и др. Они не осознают еще математических связей между компонентами и результатом того или иного действия. Даже в тех случаях, когда дети формулировали арифметическое действие, было ясно, что они механически усвоили схему формулировки действия, не вникнув в его суть, т. е. не осознали отношений между компонентами арифметического действия как единства отношений целого и его частей. Поэтому и решали задачу привычным способом счета, не прибегая к рассуждению о связях и отношениях между компонентами. Детям дошкольного возраста (5—6 лет) предлагаются для решения только простые задачи, решаемые одним действием сложения или вычитания. В зависимости от используемого для составления задач наглядного материала они делятся на задачи-драматизации и задачи-иллюстрации. Эти задачи помогают ребенку определить тема тику, сюжет, отношения между числами и перейти к самостоятельному составлению задач. В задачах-драматизациях наиболее наглядно раскрывается их смысл. Задачи этого вида особенно ценны на первом этапе обучения: дети учатся составлять задачи про самих себя, рассказывать о действиях друг друга, ставить вопрос для решения, поэтому структура задачи на примере задач-драматизаций наиболее доступна детям. Особое место в системе наглядных пособий занимают задачи-иллюстрации. Если в задачах-драматизациях все предопределено, то в задачах-иллюстрациях при помощи игрушек создается простор для разнообразия сюжетов (в них ограничиваются лишь тематика и числовые данные). Для иллюстрации задач широко применяются различные картинки. Основные требования к ним: простота сюжета, динамизм содержания и ярко выраженные количественные отношения между объектами. На одних из них все предопределено: и тема, и содержание, и числовые данные. Например, на картинке нарисованы три легковых и одна грузовая машина. С этими данными можно составить 1 или 2 варианта задач. Но задачи-картинки могут иметь и более динамичную направленность. Например, можно взять картину-панно, на которой изображены озеро и берег; на берегу нарисован лес. На изображении озера, берега и леса сделаны надрезы, в которые можно вставить небольшие контурные изображения разных предметов. Тематика и здесь предопределена, но числовые данные и содержание задачи можно в известной степени варьировать (утки плавают, выходят на берег и др.). Методические приемы в обучении решению арифметических задач Обучение дошкольников решению арифметических задач проходит через ряд взаимосвязанных между собой этапов. Первый этап — подготовительный. Основная цель этого этапа — организовать систему упражнений по выполнению операций над множествами. Так, подготовкой к решению задач на сложение являются упражнения по объединению множеств. Упражнения на выделение части множества проводятся для подготовки детей к решению задач на вычитание. С помощью операций над множествами раскрывается отношение часть — целое, доводится до понимания смысл выражений больше на, меньше на. Учитывая особенности мышления детей, следует оперировать такими множествами, элементами которых являются конкретные предметы. Воспитатель предлагает детям отсчитать и положить на карточку шесть грибов, а затем добавить еще два гриба. Дети выполняют задание, и воспитатель спрашивает: «Сколько всего стало грибов? (Дети считают.) Почему их стало восемь? На сколько грибов стало больше?» Подобные упражнения проводятся и на выделение части множества. В качестве наглядной основы для понимания детьми отношений между частями и целым могут применяться диаграммы Эйлера—Венна, в которых эти отношения изображаются графически. На втором этапе нужно упражнять детей в составлении задач и подводить к усвоению их структуры. Дети осваивают умения устанавливать связи между данными и искомым и на этой основе выбирать для решения необходимое арифметическое действие; понимать вопрос «Что нужно узнать?» На этом этапе составляются такие задачи, в которых вторым слагаемым или вычитаемым является число 1. Это важно учитывать, чтобы не затруднять детей поиском способов решения задачи. Прибавить или вычесть число 1 они могут на основе имеющихся у них знаний об образовании следующего или предыдущего числа. Например, воспитатель просит ребенка принести и поставить в стакан семь флажков, а в другой — один флажок. Эти действия и будут содержанием задачи, которую составляет воспитатель. Текст задачи произносится так, чтобы были четко названы условие, вопрос и числовые данные. При обучении дошкольников составлению арифметической задачи важно показать, чем она отличается от рассказа, загадки, логической задачи. Например, чтобы показать отличие задачи от рассказа и подчеркнуть значение чисел и вопроса задачи, воспитателю следует предложить детям рассказ, похожий на задачу. В рассуждениях по содержанию рассказа отмечается, чем отличается рассказ от задачи. Чтобы научить детей отличать задачу от загадки, воспитатель подбирает такую загадку, где имеются числовые данные. Например: «Два кольца, два конца, а посередине — гвоздик». «Что это?» — спрашивает воспитатель. В дальнейшем, упражняя детей в составлении задач, нужно особо подчеркнуть необходимость числовых данных. Например, воспитатель предлагает следующий текст задачи: «Лене я дала гусей и уток. Сколько птиц я дала Лене?» В процессе обсуждения этого текста выясняется, что такую задачу решить нельзя, так как не указано, сколько было дано гусей и сколько — уток. Лена сама составляет задачу, предлагая детям решить ее: «Мария Петровна дала мне восемь уток и одного гуся. Сколько птиц дала мне Мария Петровна?» «Всего девять птиц», — говорят дети. Чтобы убедить детей в необходимости наличия не менее двух чисел в задаче, воспитатель намеренно опускает одно из числовых данных: «Сережа держал в руках четыре воздушных шарика, часть из них улетела. Сколько шариков осталось у Сережи?» Дети приходят к выводу, что такую задачу решить невозможно, так как в ней не указано, сколько шариков улетело. Воспитатель соглашается с ними: действительно, в задаче не названо второе число, а в задаче всегда должно быть два числа. Задача повторяется в измененном виде: «Сережа держал в руках четыре шарика, один из них улетел. Сколько шариков осталось у Сережи?» На конкретных примерах из жизни дети яснее осознают необходимость иметь два числа в условии задачи, усваивают отношения между величинами, начинают различать известные данные в задаче и искомое неизвестное. Упражнять детей в умении высказываться по поводу арифметического действия сложения или вычитания — задача третьего этапа. Дошкольники без затруднения находят ответ на вопрос задачи, исходя из последовательности чисел, связей и отношений между ними. Теперь же требуется выделить действия сложения и вычитания, раскрыть их смысл, «записать» их с помощью цифр и знаков в виде числового примера. Прежде всего надо предложить детям составить задачи на нахождение суммы по двум слагаемым. «Мальчик поймал пять карасей и одного окуня», — говорит Саша. «Сколько рыбок поймал мальчик?» — формулирует вопрос Коля. Воспитатель предлагает детям ответить на вопрос. Выслушав ответы нескольких детей, он задает им новый вопрос: «Как вы узнали, что мальчик поймал шесть рыбок?» Дети отвечают, как правило, по-разному: «Увидели», «Сосчитали», «Мы знаем, что пять да один будет шесть» и т.п. Теперь можно перейти к рассуждениям: «Больше стало рыбок или меньше, когда мальчик поймал еще одну?» «Конечно, больше!» — отвечают дети. «Почему?» — «Потому что к пяти рыбкам прибавили еще одну рыбку». Воспитатель поощряет этот ответ и формулирует арифметическое действие: «Дима правильно сказал, надо сложить два числа, названные в задаче. К пяти прибавить один. Это называется действием сложения». Словесная формулировка подкрепляется практическими действиями: «К трем красным кругам прибавим один синий круг и получим четыре круга». Но постепенно арифметическое действие следует отделять от конкретного материала: «Какое число прибавили к какому?» Теперь уже при формулировке арифметического действия числа не именуются. Спешить с переходом к оперированию отвлеченными числами не следует. Такие абстрактные понятия, как «число», «арифметическое действие», становятся доступными лишь на основе длительных упражнений детей с конкретным материалом. Когда дети освоятся в основном с действием сложения, можно будет перейти к обучению вычитанию. При формулировке арифметического действия можно считать правильным, когда дети говорят отнять, прибавить, вычесть, сложить. Слова сложить, вычесть, получится, равняется являются специальными математическими терминами. Этим терминам соответствуют бытовые слова прибавить, отнять, стало, будет. Разумеется, бытовые слова ближе опыту ребенка, но желательно, чтобы воспитатель в своей речи пользовался математической терминологией, постепенно приучая и детей к употреблению этих слов. Например, ребенок говорит: «Нужно отнять из пяти яблок одно», — а воспитатель уточняет: «Нужно из пяти яблок вычесть одно яблоко». Упражняя детей в формулировке действия, полезно предлагать задачи с одинаковыми числовыми данными на разные действия. Например: «У Саши было три воздушных шара. Один шар улетел. Сколько шаров осталось?» Или: «Коле подарили три книги и одну машину. Сколько подарков получил Коля?» Устанавливается, что это задачи на разные действия. Важно при этом обращать внимание на правильную и полную формулировку ответа на вопрос задачи. Можно показывать задачи и внешне похожие, но требующие выполнения разных арифметических действий. Например: «На дереве сидели четыре птички, одна птичка улетела. Сколько птичек осталось на дереве?» Или: «На дереве сидели четыре птички. Прилетела еще одна. Сколько птичек стало на дереве?» Хорошо, когда подобные задачи составляются одновременно и детьми. На основе анализа данных задач дети приходят к выводу, что, хотя в обеих задачах речь идет об одинаковом количестве птичек, они выполняют разные действия. В одной задаче одна птичка улетает, а в другой — прилетает, поэтому в одной задаче числа нужно сложить, а в другой — вычесть одно из другого. Вопросы в задачах различны, поэтому различны и арифметические действия, различны ответы. Такое сопоставление задач, их анализ полезны детям, так как они лучше усваивают как содержание задач, так и смысл арифметического действия, обусловленного содержанием. Воспитатель задает вопрос, содержание которого близко к содержанию вопроса задачи: «Что надо сделать, чтобы узнать, сколько птичек сидит на дереве?» Затем вопрос формулируется в более общем виде: «Что надо сделать, чтобы решить эту задачу?» Или: «Что надо сделать, чтобы ответить на вопрос задачи?» Воспитатель не должен мириться с ответами детей: отнять, Поскольку к моменту обучения решению задач дети (5—6 лет) уже пользуются цифрами и знаками +,—,=, следует упражнять их в «записи» действия (используя карточки). Для упражнения детей в распознавании записей на сложение и вычитание воспитателю рекомендуется использовать несколько числовых примеров и предлагать детям их «прочесть». По указанным примерам составляются задачи на разные арифметические действия, при этом детям предлагается сделать самостоятельно запись решенных задач, а затем прочесть ее. Обязательно нужно исправить ответы детей, допустивших ошибки в записи. Читая запись, дети скорее обнаруживают свою ошибку. В дальнейшем детей упражняют в присчитывании и отсчиты-вании по единице. Если до сих пор вторым слагаемым или вычитаемым в решаемых задачах было число 1, то теперь нужно показать, как следует прибавлять или вычитать числа 2 и 3. Это позволит разнообразить числовые данные задачи и углубить понимание отношений между ними, предупредить автоматизм в ответах детей. Сначала дети учатся прибавлять путем присчитывания по единице и вычитать путем отсчитывания по единице число 2, а затем — число 3. Присчитывание — это прием, когда к известному уже числу прибавляется второе известное слагаемое, которое разбивается на единицы и прочитывается последовательно по единице. Например, к 6 нужно прибавить 3; тогда: 6+1=7, затем: 7+1=8, затем: 8+1=9. Соответственно при отсчитывании из одного числа вычитается другое последовательно по единице. Например, от восьми отнять три: 8—1=7; 7—1=6; 6—1=5. Внимание детей должно быть обращено на то, что нет необходимости при сложении пересчитывать по единице первое число, оно уже известно, а второе число (второе слагаемое) следует присчитывать по единице; надо вспомнить лишь количественный состав этого числа из единиц. Этот процесс напоминает детям то, что они делали, когда считали от любого данного числа до указанного числа. При вычитании же числа 2 (или 3) нужно вспомнить его количественный состав из единиц и вычитать это число из уменьшаемого по единице. Это напоминает детям упражнения в обратном счете в пределах указанного им отрезка чисел. Упражняясь в выполнении действий сложения и вычитания при решении задач, можно ограничиться простейшими случаями сложения (вычитания) чисел 2 и 3. Нет необходимости увеличивать второе слагаемое или вычитаемое число, так как это потребовало бы уже иных приемов вычисления. Решение задач уже в дошкольном возрасте на основе знания состава чисел (3, 4, 5, 6, 7 и др.) из двух меньших является наиболее рациональным. Задача детского, сада состоит в том, чтобы подвести детей к пониманию арифмет-ической задачи и отношений между компонентами арифметических действий сложения и вычитания. Молено предложить дошкольникам составлять задачи без наглядного материала (устные). В них дети самостоятельно выбирают тему.^ сюжет и действие, с помощью которого она должна быть решена. Прц составлении устных задач важно следить за тем, чтобы они не были шаблонными. В условии отражаются жизненные связи, бытовые и игровые ситуации. Следует приучать детей рас-суждать,, обосновывать свой ответ, в отдельных случаях использовать дл% этого наглядный материал.
Дата добавления: 2014-11-20; Просмотров: 4278; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |