Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Операция расширения




Деление

Пусть отношения А и В имеют заголовки:

{X1, X2,..., Xm, Y1, Y2,..., Yn} и {Y1, Y2,..., Yn} соответственно, т.е. атрибуты Y1, Y2,..., Yn — общие для двух отношений, и отношение A имеет дополнительные атрибуты X1, Х2,...,Хm, а отношение В не имеет дополнительных атрибутов. (Отношения А и В представляют соответственно делимое и делитель.) Предположим также, что соответствующие атрибуты (т.е. атрибуты с одинаковыми именами) определены на одном и том же домене. Пусть теперь выражения {X1, Х2,..., Хm} и {Y1, Y2,..., Yn} обозначают два составных атрибута Х и Y соответственно. Тогда делением отношений А на В (A DIVIDEBY B) называется отношение с заголовком {X} и телом, содержащим множество всех кортежей {X:x}, таких что существует кортеж {Х:х, Y:y}, который принадлежит отношению A для всех кортежей {Y:y}, принадлежащих отношению В. Нестрого это можно сформулировать так: результат содержит такие X-значения из отношения А, для которых соответствующие Y-значения (из А) включают все Y-значения из отношения В.

Пример операции деления приведен на

рис. 4.9. Отношение M является проекцией отношения Marks, а отношение S – проекцией отношения Subjects. Результат операции деления M DIVIDE BY S фактически содержит номера студентов, которые сдавали дисциплины с номерами 1 и 5.

 

M   S
StNo SubjNo SubjNo
     
     
     
   
   
   
   
   
 
M DIVIDE BY S
StNo  
 
 
 
         

 

рис. 4.9. Пример операции деления.

 

Восемь операторов Кодда не представляют минимального набора операторов, так как не все из них примитивны, их можно определить в терминах других операторов. Например, естественное соединение – это проекция выборки произведения. Фактически три операции из этого набора, а именно соединение, пересечение и деление, можно определить через остальные пять. Операции выборки, проекции, произведения, объединения и вычитания можно рассматривать как примитивные в том смысле, что ни одна из них не выражается через другие. Поэтому минимальный набор будет состоять из этих пяти примитивных операций. Однако на практике другие три операции (в особенности соединение) настолько часто используются, что имеет смысл обеспечить их непосредственную поддержку, несмотря на то что они не примитивны.

Многие авторы предлагали новые алгебраические операторы после определения Коддом первоначальных восьми. Рассмотрим два таких оператора – EXTEND (расширение) и SUMMARIZE (подведение итогов), которые удачно дополняют основной набор восьми операторов.

 

С помощью операции расширения из определенного отношения создается новое отношение (по крайней мере концептуально), которое похоже на начальное, но содержит дополнительный атрибут, значения которого получены посредством некоторых скалярных вычислений. На

рис. 4.10 показаны исходное отношение и результат операции расширения:

EXTEND GROUPS ADD (2002-EnterYear) AS COURCE

 

GROUPS   Результат операции расширения
GrNo EnterYear GrName   GrNo EnterYear GrName Cource
    А–98–51       А–98–51  
    Б–99–51       Б–99–51  
    Б–98–51       Б–98–51  

 

рис. 4.10 Пример выполнения операции расширения.

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 483; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.