Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Плоскость в пространстве




Прямая в пространстве

 

каноническое уравнение прямой в пространстве, проходящей через точку A1(x1, y1, z1), параллельно вектору .

-- направляющий вектор.


Замечание. Если обращается в ноль одна из координат направляющего вектора, например m, то уравнение прямой принимает вид:

-

это прямая, лежащая в плоскости x=x1.

Если равны нулю две координаты направляющего вектора, например m=n=0, то уравнение прямой примет вид:

- эта прямая есть пересечение двух плоскостей x=x1 и y=y1, то есть параллельна оси OZ.

- уравнение прямой, проходящей через две точки .

Пример (см. задание 1.6)

Составим уравнение прямых А1, А2 и А1А3.

А1(2, 0, 3), А2(-1, 0, 8), А3(0, 2, 4).

Воспользуемся уравнением прямой, проходящей через две точки:

;

;

-- уравнение прямой A1A2.

Эта прямая лежит в плоскости (т.е. в плоскости OXZ) и ее уравнение можно записать так:

.

 

 

 
 


-уравнение плоскости, проходящей через точку , перпендикулярно вектору - нормали к плоскости.

 

-- уравнение плоскости, проходящей через три заданные точки .

 

Если две плоскости заданы общими уравнениями:

то по уравнениям двух плоскостей можно определить их нормали .

На основании теоремы об углах, образованных взаимно перпендикулярными сторонами, один из углов между плоскостями можно определить как угол между нормалями по формуле:

.

Пример (см.задание 1.7)

Составить уравнение плоскости А1А2А3, если А1(2, 0,,3), А2(-1, 0, 8), А3(0,2,4).

Воспользуемся уравнением плоскости, проходящей через три точки:

,

,

 

.

Раскроем определитель:

(x-2)∙0+y∙5∙(-2)+(z-3)∙(-3)∙2-(z-3)∙0-(x-2)∙2∙5-y∙(-3)∙1=0;

-10(x-2)-7y-6(z-3)=0;

-10x-7y-6z+38=0 –

уравнение плоскости А1А2А3.

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 384; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.