Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производная по направлению. Градиент




Частные производные высших порядков

Частные производные первого порядка есть функции двух переменных и, в свою очередь, могут иметь частные производные.

Если существуют частные производные от частных производных по x и y, то их называют частными производными второго порядка и обозначают:

Частные производные, вычисленные по различным аргументам, называются смешанными.

Теорема. Если смешанные производные есть непрерывные функции, то они равны между собой:

.

Аналогично определяются производные третьего и более порядков.

 

 

Скалярным полем называется часть пространства (или все пространство), каждой точке которой соответствует численное значение некоторой скалярной величины.

Примеры

Тело, имеющее в каждой точке определенное значение температуры – скалярное поле.

Неоднородное тело, каждой точке которой соответствует определенная плотность – скалярное поле плотности.

 

Во всех этих случаях скалярная величина U не зависит от времени, а зависит от положения (координат) точки М в пространстве, то есть -- это функция трех переменных, она называется функцией поля. И обратно, всякая функция трех переменных u=f(x, y, z) задает некоторое скалярное поле.

Функция плоского скалярного поля зависит от двух переменных z=f(x, y).

Рассмотрим скалярное поле u=f(x, y, z).

Вектор, координатами которого являются частные производные функции, вычисленные в заданной точке, называется градиентом функции в этой точке.

или

Рассмотрим некоторый вектор и на нем две точки M0(x0, y0, z0) и . Найдем приращение функции в направлении :

.

Производной по направлению называется следующий предел, если он существует:

.

где -- направляющие косинусы вектора ; α, β, γ -- углы, которые образует вектор с осями координат.

Для функции двух переменных эти формулы принимают вид:

или ,

так как .

 
 

 


Между градиентом и производной по направлению в одной и той же точке существует связь.

Теорема. Скалярное произведение градиента функции на вектор некоторого направления равно производной данной функции в направлении этого вектора:

.

Следствие. Производная по направлению имеет наибольшее значение, если это направление совпадает с направлением градиента (обосновать самостоятельно, используя определение скалярного произведения и считая, что ).

 

Выводы:

1. Градиент – это вектор, показывающий направление наибольшего возрастания функции в данной точке и имеющий модуль, численно равный скорости этого возрастания:

.

2. Производная по направлению – это скорость изменения функции в направлении : если , то функция в этом направлении возрастает,

если , то функция убывает.

3. Если вектор совпадает с одним из векторов , то производная по направлению этого вектора совпадает с соответствующей частной производной.

Например, если , тогда .

Пример (см. задание VII)

Даны функция , точка А(1, 2) и вектор .

Найти: 1) ;

2) .

Решение.

1) найдем частные производные функции и вычислим их в точке А.

, .

Тогда .

2) Найдем направляющие косинусы вектора :

.

Тогда .

Ответ: ;

.

 

 

Ниже приведены задания для контрольной работы.

Номер варианта соответствует последней цифре Вашего шифра. Из каждого задания необходимо выполнить пример, номер которого совпадает с номером Вашего варианта.

Каждую контрольную работу следует выполнять в отдельной тетради. Следует указать свой шифр и номер варианта. Условие задачи должно быть полностью переписано перед ее решением.

Отмеченные рецензентом ошибки необходимо исправить в конце работы, сделав работу над ошибками.

Зачтенные контрольные работы предъявляются студентом при сдаче зачета или экзамена.

 

ЗАДАНИЕ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

I По координатам вершины пирамиды А1А2А3А4 найти:

1) длину ребра А1А2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

1. А1(4, 2, 5), А2(0, 7, 2), А3(0, 2, 7), А4(1, 5, 0)

2. А1(4, 4, 10), А2(4,10, 2), А3(2, 8, 4), А4(9, 6, 4)

3. А1(4, 6, 5), А2(9, 6, 4), А3(2,10,10), А4(7, 5, 9)

4. А1(3, 5, 4), А2(8, 7, 4), А3(5,10, 4), А4(4, 7, 8)

5. А1(10, 6, 6), А2(-2, 8, 2), А3(6, 8, 9), А4(7,10, 3)

6. А1(1, 8, 2), А2(5, 2, 6), А3(5, 7, 4), А4(4,10, 9)

7. А16, 6, 5), А2(4, 9, 5), А3(4, 6,11), А4(6, 9, 3)

8. А1(7, 2, 2), А2(5, 7, 7), А3(5, 3, 1), А4(2, 3, 7)

9. А1(8, 6, 4), А2(10, 5, 5), А3(5, 6, 8), А4(8,10, 7)

10. А1(7, 7, 3), А2(6, 5, 8), А3(3, 5, 8), А4(8, 4, 1)

II 1. Даны вершины треугольника АВС: А(-3, 1), В(0, 4), С(2, 5). Написать уравнение высоты, проведенной из вершины С к стороне АВ.

2. Стороны треугольника АВС заданы уравнениями:

x+y=2 (AB), 2x-y=-2 (AC), x-2y=2 (BC).

Написать уравнение высоты, проведенной из вершины А к стороне ВС.

3. Даны вершины треугольника АВС: А(4, -2), В(3, -1), С(2, 6). Написать уравнение средней линии Δ АВС, параллельной стороне АС.

4. Стороны треугольника АВС заданы уравнениями:

x+y-3=0 (AB), y-2x=0 (AC), x-y-1=0 (BC).

Написать уравнение прямой, проходящей через вершину А параллельно стороне ВС.

5. Даны вершины четырехугольника A(0, 6), B(7,12), C(6, 2), D(2, 2). Найти точку пересечения его диагоналей.

6. Даны вершины треугольника АВС: А(0, 4), В(-3, 2), С(2, 6). Написать уравнение медианы, проведенной из точки В.

7. Даны вершины треугольника АВС: А(2, 4), В(-2, 5), С(-1, 2). Написать уравнение высоты, проведенной из вершины А к стороне ВС.

8. Даны вершины трапеции A(-2,-3), B(-3, 1), C(7, 7), D(3, 0). Написать уравнение средней линии трапеции.

9. В треугольнике MNP написать уравнение медианы, проведенной из вершины М, если известно, что М(4, -1), N(2, 3), P(-4, -2).

10. Стороны треугольника лежат на прямых:

x-y=-2 (AB), x+y=1 (BC), x-2y=1 (AC). Написать уравнение высоты, опущенной из вершины В на сторону АС.

 

III Решить систему линейных уравнений, используя формулы Крамера.

 

1. 2.
3. 4.
5. 6.
7. 8.
9. 10.

 

 

IV Вычислить пределы функций, не пользуясь правилом Лопиталя.

 

1. a) b) c)
2. a) b) c)
3. a) b) c)
4. a) b) c)
5. a) b) c)
6. a) b) c)
7. a) b) c)
8. a) b) c)
9. a) b) c)
10. a) b) c)

V Найти производные первого порядка, используя правила вычисления производных.

1. a) b) c)
2. a) b) c)
3. a) b) c)
4. a) b) c)
5. a) b) c)
6. a) b) c)
7. a) b) c)
8. a) b) c)
9. a) b) c)
10. a) b) c)

 

VI Исследовать методами дифференциального исчисления функцию и, используя результаты исследования, построить график.

1. 2.
3. 4.
5. 6.
7. 8.
9. 10.

VII Дана функция , точка и вектор . Найти:

1) grad z в точке А;

2) производную в точке А по направлению вектора .

 

1. Z=x2+xy+y2
2. Z=2x2+3xy+y2
3. Z=ln(5x2+3y2)
4. Z=ln(5x2+4y)
5. Z=5x2+6xy
6. Z=arctg(xy2)
7. Z=arcsin(x2/y)
8. Z=ln(3x2+4y2)
9. Z=3x4+2x2y3
10. Z=3x2y3+5xy2

 


 


 

 

МАТЕМАТИКА

I ЧАСТЬ

 

 

Составители: Арутюнян Ашот Страевич

Горшкова Светлана Николаевна

Данович Лариса Михайловна

Наумова Наталья Александровна

Петрушина Ирина Игоревна

 

 

Редактор Л.В. Троицкая

Компьютерная верстка Н.А.Наумовой

 

  Подписано в печать 25.10.05 г. Формат 60х84/16
Бумага оберточная № 1 Офсетная печать
Печ.л. 2,25 Изд.№ 329
Усл.печ.л. 2,0 Тираж 300
Уч.-изд.л. 1,5 Заказ №
Цена руб.

 

 

Лиц. ИД №02586 от 18. 08. 2000

Кубанский государственный технологический университет

350072, Краснодар, ул. Московская, 2-а

 

Лиц. ПД №10-47020 от 11. 09. 2000

Типография КубГТУ. 350058, Краснодар, ул. Старокубанская, 88/4

 




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 2491; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.044 сек.