КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. Несимметричного сечения
Условие задачи Несимметричного сечения Пример 2. Определение моментов инерции
Сечение стержня представляет собой несимметричную фигуру, показанную на рис. 5.19. Требуется найти положение главных центральных осей инерции фигуры и моменты инерции относительно этих осей. Найдем положение центра тяжести фигуры по формулам (5.15). Разобьем фигуру на три простые: треугольник I, прямоугольник II и квадрант круга Ш. Площадь всей фигуры Для определения статических моментов выберем вспомогательные оси , проходящие через центр тяжести прямоугольника II (рис. 5.20). Статический момент каждой фигуры равен площади фигуры, умноженной на координату центра тяжести этой фигуры в системе координат . Суммарные статические моменты Координаты центра тяжести отложены на рис. 5.20.
Проведем через центр тяжести центральные оси (см. рис. 5.20) и найдем моменты инерции относительно этих осей, как сумму моментов инерций простых фигур, составляющих заданную фигуру. Для определения моментов инерции простых фигур I, II и Ш используем формулы (5.16)–(5.18). Моменты инерции относительно собственных осей прямоугольника, треугольника и квадранта круга вычисляем по формулам (5.26), (5.28) и (5.29). Теперь найдем положение главных осей инерции. Угол, на который надо повернуть ось , чтобы она стала главной осью, определяем по формуле (5.23): ; ; . В соответствии с правилом знаков откладываем отрицательный угол по часовой стрелке и проводим главные центральные оси инерции (см. рис. 5.20). Вычислим моменты инерции относительно этих осей по формуле (5.24): ; . Для проверки вычислений удобно использовать следующее свойство: сумма моментов инерций относительно двух любых пар ортогональных осей есть величина постоянная. Тогда должно быть . В нашем примере . Чтобы выяснить, какой момент инерции – максимальный или минимальный – соответствует оси , исследуем знак второй производной функции по (5.25). . Положительный знак второй производной означает, что оси соответствует минимальное значение момента инерции, т. е.
Найдем радиусы инерции относительно главных центральных осей по (5.10) и построим эллипс инерции.
Эллипс инерции показан на рис. 5.20. Видно, что эллипс вытянут в том направлении, в котором вытянута фигура. 5.2.2. Определение грузоподъемности жесткого стержня моносимметричного сечения при внецентренном растяжении-сжатии (задача № 29)
Дата добавления: 2014-12-08; Просмотров: 946; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |