КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов
Закон Био-Савара-Лапласа позволяет вычислить магнитную индукцию поля, созданного элементом тока Id на расстоянии от него:
dB = , (14-5) т.е. индукция магнитного поля, создаваемого элементом тока Id точке А, (рис.14.3), на расстоянии r от него, пропорциональна величине элемента тока и синусу угла a, равного углу между направлениями элемента тока Id и , а также обратно пропорциональна квадрату расстояния между ними; Гн / м - магнитная постоянная. Закон Био - Савара - Лапласа в векторной форме имеет вид: d = . (14-6) Закон Био - Савара - Лапласа позволяет вычислить магнитную индукцию поля любых систем токов, используя принцип суперпозиции магнитных поля = . (14-7) Применим закон Био - Савара - Лапласа и принцип суперпозиции (14-7) к расчету магнитных полей следующих токов: 1) Магнитное поле прямолинейного тока. Из рис.14.4 с учетом (14-6) находим, что d плоскости, в которой лежат d и ; далее можно найти ,откуда, принимая во внимание, что получаем . С учетом этого из (14-5) находим:
интегрируя последнее равенство, получаем (14-8) Для бесконечно длинного проводника , и из (8) следует, что (14-9) 2) Магнитное поле кругового тока. Можно показать, что магнитная индукция поля, созданного круговым током радиуса R, на расстоянии r0 вдоль перпендикуляра, восстановленного из центра контура, (рис.14.5), будет (14-10) В частности, в центре кругового тока ,
. (14-11)
Для плоской катушки, состоящей из N, витков магнитная индукция на оси катушки . (14-12) При больших расстояниях от контура, т. е. при r0 >> R из (14-10) получим
(14-13)
Дата добавления: 2014-12-08; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |