КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Неполная индукция. Популярная индукция
В-»А АлВ А,В А AvB Импликация: Отрицание: Эквиваленция: AvB А НА ' А • А=В (А->В)л(В-»А) ' Кроме этих прямых правил получения новых строк вывода, в СНВ приняты непрямые правила, определяющие стратегию построения вывода. Например, если нужно вывести из посылок формулу вида импликации (xi —> (xz —>...(xn-i -> Хп))), то после выписывания посылок выписываются в качестве допущений все антецеденты заключения, начиная с антецедента главного знака импликации, т.е. xi, •m, хз,..., Xn-i. Г,А->В Если при этом удастся вывести Хп, то по непрямому правилу -> в, ^собираем Г-»А->В последовательно формулы: (xn-i-^Xn) (при этом исключается допущение Xn-i), (хп-2 —> (Xn-i —> Xn)(xn-r исключается из числа допущений) и т.д., пока не получим требуемое заключение xi -»(хп-2 —>... (Xn-i —> Хп). Это правило построения прямого вывода. Приведем пример вывода с применением этого правила: ((pAq)->r) |_ (p-> (q ->r) 1. (р л q) —> г — посылка 2. р — допущение 3. q — допущение 4. р л q (2, 3. л в) 5.г(1,4,^„) 6. q -> г(3,5, ^в)(-3) 7.p^(q^r)(2,6, -^.)(-2) Другое непрямое правило используется для построения косвенного вывода, при котором допущением является отрицание В или отрицание последнего консеквен- _ Г,А->(Вл1В) та Хп. Это правило имеет вид —————-———— и говорит о том, что если из каких-то Г—> |А формул (Г) и допущения (А) получено противоречие (В л ТВ), то из этих формул следует ча. Таким образом, если строится косвенный вывод формулы вида (xi —> (х2 —>...(xn-i —> Хп)...), то после посылок выписываются формулы: X] 1 допущения Х2 Xn-i ^п допущение косвенного доказательства [ДКД] Затем по правилам вывода получаем следствия из всех имеющихся посылок и допущений до тех пор, пока не получим две противоречащие друг другу формулы'('В и 1В), что свидетельствуе! о несовместимости допущения косвенного доказательства с другими допущениями и посылками. Отсюда делается вывод о его ложности. Тогда в вывод вписывается строка 11 Хп, и тем самым допущение косвенного доказательства исключается. Например, осуществим косвенный вывод: (р —> q) ("-(1q —> 1p) ( l.p—>q —посылка 2.1q — допущение з. Ирдкд 4/Р(3,1и) 5.q(l,4,->„) 6. а л 1я(5,2,лв) 7. 1 Up (6,3, 1в)(-3) 8. 1p (7, 1и) 9. 1q -> 1p (2,8, ->и)(-2) Косвенный вывод считается законченным, если в ходе вывода получена какая-то формула и ее отрицание, т е. противоречие. Таким образом, если строится косвенный вывод формулы вида xi —> (x-i —>..—> Хп), то построчно выписывают все антецеденты от xi до Xn-i в качестве допущений; в последней строчке выписывают отрицание последнего консеквента — 1хп как допущение косвенного вывода По правилам вывода получаем различные следствия из всех имеющихся посылок и допущений. Получение двух противоречащих следствий говорит о ложности допущения косвенного вывода. Па этом основании ДКД отрицается, т.е. получаем двойное отрицание. Снятие двойного отрицания дает формулу Хп. Основными логическими свойствами системы натурального вывода являются ее непротиворечивость и полнота. Непротиворечивость означает, что из истинных посылок могут получаться только истинные следствия и если формула выводима из пустого множества посылок, то она тождественно истинна. Это исключает возможность вывести из пустого множества посылок какую-либо формулу (А) и ее отрицание (1А). Полнота системы означает, что дедуктивных ее средств достаточно, чтобы вывести,из пустого множества посылок любую тождественно истинную формулу. Логика предикатов является более общей логической системой и включает логику высказываний как свою часть. Она располагает более эффективными логическими средствами для анализа рассуждений в естественном языке. КОНТРОЛЬНЫЕ ВОПРОСЫ 1. На какие виды делятся выводы из сложных суждений? 2. Как строятся чисто условные умозаключения? 3. Что такое условно-категорическое умозаключение? Назовите его правильные модусы, выразите их в символической записи. 4. Какое умозаключение называется разделительно-категорическим? Назовите его модусы, выразите их в символической записи. 5. Укажите условия правильности выводов по утверждающе-отрицающему и от-рицающе-утверждающему модусам разделительно-категорического умозаключения. 6. Какое умозаключение называется условно-разделительным (леммантичес-ким)? Какие модусы имеет дилемма? 7. Что такое энтимема? 8. Каковы принципы построения логики высказываний? 9. Покажите значение различных видов условных и разделительных умозаключений в работе юриста. Глава VIII ИНДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ Познание в любой области науки и практики начинается с эмпирического познания. В процессе наблюдения однотипных природных и социальных явлений фиксируется.внимание на повторяемости у них определенных признаков. Устойчивая повторяемость наводит на мысль (индуцирует), что каждый из таких признаков является не индивидуальным, а общим, присущим всем явлениям определенного класса. Логический переход от знания об отдельных явлениях к знанию общему совершается в этом случае в форме индуктивного умозаключения, или индукции (от латинского inductio — «наведение»). Индуктивным называется умозаключение, в котором на основании принадлежности признака отдельным предметам или частям некоторого класса делают вывод о его принадлежности классу в целом. В истории физики, например, опытным путем было установлено, что железные стержни хорошо проводят электричество. Такое же свойство было обнаружено у медных стержней и у серебра. Учитывая принадлежность указанных проводников к металлам, было сделано индуктивное обобщение, что всем металлам свойственна электропроводность. Посылками индуктивного умозаключения выступают суждения, в которых фиксируется полученная опытным путем информация о повторяемости признака Р у ряда явлений — Si, 82,.... S„, принадлежащих одному и тому же классу К. Схема умозаключения имеет следующий вид: Посылки: 1) Si имеет признак Р S2 имеет признак Р Sn имеет признак Р 2) Si, 82,..., Sn — элементы (части) класса К 11 - 1У02 Заключение: Всем предметам класса К присущ признак Р В основе логического перехода от посылок к заключению в и дуктивном выводе лежит подтверждаемое тысячелетней практикой положение о закономерном развитии мира, всеобщем характере причинной связи, проявлении необходимых признаков явлений через их всеобщность и устойчивую повторяемость. Именно (эти методологические положения оправдывают логическую состоятельность и эффективность индуктивных выводов. Основная функция индуктивных выводов в процессе познания — генерализация, т.е. получение общих суждений. По своему содержанию и познавательному значению эти обобщения могут носить различный характер — от простейших обобщений повседневной практики до эмпирических обобщений в науке или универсальных суждений, выражающих всеобщие законы. История науки показывает, что многие открытия в физике.в области электричества, магнетизма, оптики были сделаны на основе индуктивного обобщения эмпирических данных. Индуктивная обработка результатов наблюдений предшествовала научной классификации растений и животных в биологии. Индуктивным обобщениям обязаны многие гипотезы в современной науке. Важное место принадлежит индуктивным выводам в судебно-следственной практике — на их основе формулируются многочисленные обобщения, касающиеся обычных отношений между людьми, мотивов и целей совершения противоправных действий, способов совершения преступлений, типичных реакций виновников преступления на действия следственных органов и т.п. Полнота и законченность опыта влияют на строгость логического следования в индукции, предопределяя в конечном счете демон-стративность или недемонстративность этих умозаключений. В зависимости от полноты и законченности эмпирического исследования различают два вида индуктивных умозаключений: полную индукцию и неполную индукцию. Рассмотрим их особенности. § 1. Полная индукция Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса определенного признака делают вывод о его принадлежности классу в целом. Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элементов в которых является конечным и легко обозримым. Например, число государств в Европе, количество промышленных предприятий в данном регионе, число субъектов федерации в данном государстве и т.п. Представим, что перед аудиторской комиссией поставлена задача проверить состояние финансовой дисциплины в филиалах конкретного банковского объединения. Известно, что в его состав входят пять отдельных филиалов. Обычный способ проверки в таких случаях — анализ деятельности каждого из пяти банков. Если окажется, что ни в одном из них не обнаружено финансовых нарушений, то тем самым можно сделать обобщающее заключение: все филиалы банковского объединения соблюдают финансовую дисциплину. Схема умозаключения полной индукции имеет следующий вид: Посылки: 1) Si имеет признак Р §2 имеет признак Р Sn имеет признак Р 2) Si, 82,..., Sn — составляют класс К Заключение: Всем предметам класса К присущ признак Р Выраженная в посылках этого умозаключения информация о каждом элементе или каждой части класса служит показателем полноты исследования и достаточным основанием для логического переноса признака на весь класс. Тем самым вывод в умозаключении полной индукции носит демонстративный характер. Это означает, что при истинности посылок заключение в выводе будет необходимо истинным. В одних случаях полная индукция дает утвердительные заключения, если в посылках фиксируется наличие определенного признака у каждого элемента или части класса. В других случаях в качестве заключения может выступать отрицательное суждение, если в посылках фиксируется отсутствие определенного признака у всех представителей класса. Познавательная роль умозаключения полной индукции проявляется в формировании нового знания о классе или роде явлений. Логический перенос признака с отдельных предметов на класс в целом не является простым суммированием. Знание о классе или роде — это обобщение, представляющее собой новую ступень в раз-витиизнания. Так, при выявлении характера кривой, по которой движутся планеты вокруг Солнца, в астрономии первоначально было установлено, что Марс, Венера, Юпитер, Сатурн, Земля обращаются по эллип-сообразным орбитам. С открытием новых планет было установлено, что Уран, Нептун, Плутон и Меркурий обращаются по таким же орбитам. В итоге в форме полной индукции было сделано обобщение, что все планеты Солнечной системы обращаются по эллипсооб-разным орбитам. Это новое знание имеет принципиально иное значение, нежели констатация факта эллипсообразного движения каждой из планет. Во-первых, обобщающий вывод оказывает влияние на развитие понятия «планета Солнечной системы», поскольку в его содержание может быть включен новый признак — обращение вокруг Солнца эллипсообразное. Во-вторых, этот признак может служить основой для выявления других существенных характеристик всего класса явлений, например, для решения вопроса о механизме возникновения планет Солнечной системы. Демонстративность полной индукции позволяет использовать этот вид умозаключения в доказательном рассуждении. Так, в геометрии теорема о сумме внутренних углов треугольника доказывается отдельно для трех видов треугольников: остроугольных, прямоугольных и тупоугольных. Учитывая, что в каждом из них сумма углов равна 180° и все они составляют конечное множество, строят индуктивное обобщение: во всяком треугольнике сумма его внутренних углов равна 180°. В судебном исследовании нередко используются доказательные рассуждения в форме полной индукции с отрицательными заключениями. Например, исчерпывающим перечислением разновидностей исключается определенный способ совершения преступления, способ проникновения злоумышленника к месту совершения преступления, тип оружия, которым было нанесено ранение, и т.п. Применимость полной индукции в рассуждениях определяется практической перечислимостью множества явлений. Если невозможно охватить весь класс предметов, то обобщение строится в форме неполной индукции. Неполная индукция — это умозаключение, в котором на основе принадлежности признака некоторым элементам или частям класса делают вывод о его принадлежности классу в целом. Схема неполной индукции имеет следующий вид: Посылки: 1) Si имеет признак Р S2 имеет признак Р Sn имеет признак Р ' 2) Si, 82, ..., Sn принадлежат классу К Заключение: Классу К, по-видимому, присущ признак Р Неполнота индуктивного обобщения выражается в том, что исследуют не все, а лишь некоторые элементы или части класса — от Si до Sn. Логический переход в неполной индукции от некоторых ко всем элементам или частям класса не является произвольным. Он оправдывается эмпирическими основаниями — объективной зависимостью между всеобщим характером признаков и устойчивой их повторяемостью в опыте для определенного рода явлений. Отсюда широкое использование неполной индукции в практике. Так, например, во время уборки урожая заключают о засоренности, влажности и других характеристиках большой партии зерна на основе отдельно взятых проб. В производственных условиях по выборочным образцам заключают о качестве той или иной массовой продукции, например, моющих средств — в химической промышленности; труб, металлического листа, проволоки — в прокатном производстве; молока, круп, муки — в пищевой промышленности. Индуктивный переход от некоторых ко всем не может претендовать на логическую необходимость, поскольку повторяемость признака может оказаться результатом простого совпадения. Тем самым для неполной индукции характерно ослабленное логическое следование — истинные посылки обеспечивают получение не достоверного, а лишь проблематичного заключения. При этом обнаружение хотя бы одного случая, противоречащего обобщению, делает индуктивный вывод несостоятельным. На этом основании неполную индукцию относят к правдоподобным (недемонстративным) умозаключениям. В таких выводах заключение следует из истинных посылок с определенной степенью вероятности, которая может колебаться от маловероятной до^есь-ма правдоподобной. Существенное влияние на характер логического следования в выводах неполной индукции оказывает способ отбора исходного материала, который проявляется в методичности или систематичности формирования посылок индуктивного умозаключения. По способу отбора различают два вида неполной индукции: (1) индукцию путем перечисления, получившую название популярной индукции, и (2) индукцию путем отбора, которую называют научной индукцией. Популярной индукцией называют обобщение, в котором путем перечисления устанавливают принадлежность признака некоторым предметам или частям класса и на этой основе проблематично заключают о его принадлежности всему классу. В процессе многовековой деятельности люди наблюдают устойчивую повторяемость многих явлений. На этой основе возникают обобщения, которые используются для объяснения наступивших и предсказания будущих событий и явлений. Такого рода обобщения бывают связаны с наблюдениями над погодой, влиянием климатических условий на урожай, причинами распространения болезней, поведением людей в определенных ситуациях, отношениями между людьми и т.п. Логический механизм большинства таких обобщений — популярная индукция. Ее иногда называют индукцией через простое перечисление. Повторяемость признаков во многих случаях действительно отражает всеобщие свойства явлений. Построенные на ее основе обобщения выполняют важную функцию направляющих начал в практической деятельности людей. Без таких простейших обобщений невозможен ни один вид трудовой деятельности, будь то совершенствование орудий труда, развитие мореплавания, успешное ведение земледелия, контакты между людьми в социальной среде. В процессе расследования преступлений часто используют эмпирические индуктивные обобщения, касающиеся поведения лиц, причастных к преступлению. Например: лица, совершившие преступления, стремятся скрыться от суда и следствия; угроза убийством часто приводится в исполнение; обнаружение похищенных вещей (поличное) свидетельствует о причастности к преступлению. Такие опытные обобщения, или фактические презумпции, как их нередко называют в юридической литературе, часто оказывают неоценимую помощь следствию несмотря на то, что они являются проблематичными суждениями. Популярная индукция определяет первые шаги и в развитии научных знаний. Любая наука начинает с эмпирического исследования — наблюдения над соответствующими объектами с целью их описания, классификации, выявления устойчивых связей, отношений и зависимостей. Первые обобщения в науке обязаны простейшим индуктивным заключениям путем простого перечисления повторяющихся признаков. Они выполняют важную эвристическую функцию первоначальных предположений, догадок и гипотетических объяснений, которые нуждаются в дальнейшей проверке и уточнении. Чисто перечислительное обобщение возникает уже на уровне приспособительно-рефлекторных реакций животных, когда повторяющиеся раздражения подкрепляют условный рефлекс. На уровне человеческого сознания повторяющийся признак у однородных явлений не просто порождает рефлекс или психологическое чувство ожидания, а наводит на мысль о том, что повторяемость — результат не чисто случайного стечения обстоятельств, а проявление каких-то невыявленных зависимостей. Обоснованность выводов в популярной индукции определяется главным образом количественным показателем: соотношением исследованного подмножества предметов (образца или выборки) ко всему классу (популяции). Чем ближе исследованный образец ко всему классу, тем основательнее, а значит, и вероятнее будет индуктивное обобщение. В условиях, когда исследуются лишь некоторые представители класса, не исключается возможность ошибочного обобщения. Примером этому может служить полученное с помощью популярной индукции и долгое время бытовавшее в Европе обобщение «Все лебеди белые». Оно строилось на основе многочисленных наблюдений при отсутствии противоречащих случаев. После того как высадившиеся в Австралии в XVII в. европейцы обнаружили черных лебедей, генерализация оказалась опровергнутой. Ошибочные заключения о выводах популярной индукции могут появиться по причине несоблюдения требований об учете противоречащих случаев, которые делают обобщение несостоятельным. Так бывает в процессе предварительного расследования, когда решается проблема относимости доказательств, то есть отбора из множества фактических обстоятельств лишь таких, которые, по мнению следователя, имеют отношение к делу. В этом случае руководствуются лишь одной, возможно, наиболее правдоподобной либо наиболее «близкой сердцу» версией и отбирают лишь подтверждающие ее обстоятельства. Другие же факты, и прежде всего противоречащие исходной версии, игнорируются. Нередко их просто не видят и.пото- му не принимают в расчет. Противоречащие факты также остаются вне поля зрения в силу недостаточной культуры, невнимательности или дефектов наблюдения. В этом случае следователь попадает в плен фактов: из множества явлений фиксирует лишь те, которые оказываются преобладающими в опыте, и строит на их основ/поспешное обобщение. Под влиянием этой иллюзии в дальнейших наблюдениях не только не ожидают, но и не допускают возможности появления противоречащих случаев. Ошибочные индуктивные заключения могут появляться не только в результате заблуждения, но и при недобросовестном, предвзятом обобщении, когда сознательно игнорируют или скрывают противоречащие случаи. Такие мнимые индуктивные обобщения используются как уловки. Некорректно построенные индуктивные обобщения нередко лежат в основе различного рода суеверий, невежественных поверий и примет вроде «дурного глаза», «хороших» и «дурных» сновидений, перебежавшей дорогу черной кошки и т.п.
Дата добавления: 2014-12-16; Просмотров: 580; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |