Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Инструкция 3 страница




203. . 204. .

205. . 206. .

207. . 208. .

209. . 210. .

211. . 212. .

213. . 214. .

215. . 216. .

217. . 218. .

219. . 220. .

 

В задачах 221—240 вычислить определенный интеграл с точностью до 0,001 путем разложения подынтегральной функ­ции в ряд и почленного интегрирования ряда:

 

   
   
   
   
   
   
   
   
   
   

 

241. В читальном зале имеется 6 учебников по теории ве­роятностей, из которых три в мягком переплете. Библиотекарь взял два учебника. Найти вероятность того, что оба учебника окажутся в мягком переплете.

242. Студент знает ответы на 20 из 25 вопросов програм­мы. Найти вероятность того, что он знает ответы на предло­женные ему экзаменатором три вопроса.

243. Для некоторой местности в июле шесть пасмурных дней. Найти вероятность того, что первого и второго июля будет ясная погода.

244. Из 200 рабочих норму выработки не выполняют 15 человек. Найти вероятность того, что два случайно выбран­ных рабочих не выполняют норму.

245. Три стрелка стреляют по мишени. Вероятность попа­дания в цель первым стрелком равна 0,6, вторым — 0,7, третьим — 0,8. Найти вероятность того, что при одном вы­стреле попадут в цель: а) все три стрелка; б) попадет хотя бы один из них.

246. В ящике лежат 20 электрических лампочек, из кото­рых две нестандартные. Найти вероятность того, что взятые одна за другой две лампочки окажутся стандартными.

247. Одновременно бросаются две игральные кости. Най­ти вероятность того, что на каждой кости появится нечетное число очков.

248. Из заготовленной для посева пшеницы зерно первого сорта составляет 40%, второго сорта — 50%, третьего сор­та — 10%. Вероятность того, что взойдет зерно первого сорт, равна 0,8, второго — 0,5, третьего — 0,3. Найти вероятность того, что взойдет наугад взятое зерно.

249. В магазин поступили телевизоры из трех заводов. Ве­роятность того, что телевизор изготовлен на первом заводе, равна 0,3, на втором — 0,2, на третьем — 0,5. Вероятность то­го, что телевизор окажется бракованным, для первого завода равна 0,2, для второго — 0,1, для третьего — 0,3. Найти веро­ятность того, что наугад взятый телевизор окажется не бра­кованным.

250. В мастерской на трех станках изготавливаются одно­типные детали. Вероятность безотказной работы первого станка равна 0,3, второго — 0,4, третьего — 0,3. Вероятность изготовления бракованной детали на первом станке равна 0,2, на втором — 0,3, на третьем — 0,1. Найти вероятность того, что наугад выбранная деталь окажется стандартной.

 

251. Вероятность попадания в цель при одном выстреле равна 0,7. Производится 4 выстрела. Найти вероятность того, что цель будет поражена: а) три раза; б) не более двух раз.

252. Вероятность всхожести пшеницы равна 0,8. Какова вероятность того, что из пяти семян взойдет не менее трех?

253. Вероятность попадания в цель при одном выстреле равна 0,8. Написать закон распределения вероятностей попа­даний в цель при 5 выстрелах.

254. Всхожесть семян пшеницы составляет 90%. Опреде­лить наиболее вероятное число всходов из 200 посеянных се­мян.

255. Семена пшеницы содержат 0,2% сорняков. Найти ве­роятность того, что в 1 000 семян будет 6 семян сорняков.

 

В задачах 256—260 дана вероятность р того, что семя злака прорастет. Найти вероятность того, что из n посеян­ных семян прорастет ровно k семян.

256. n = 100, р = 0,9, k = 95.

257. n = 400, р = 0,8, k = 330.

258. n = 900, р = 0,36, k = 340.

259. n = 225, р = 0,64, k = 158.

260. n = 250, р = 0,81, k = 200.

 

В задачах 261—270 дана вероятность р появления собы­тия A в каждом из n независимых испытаний. Найти вероят­ность того, что в этих испытаниях событие A появится не ме­нее k1 и не более k2 раз.

261. n = 360, р = 0,8, k1 = 280, k2 = 300.

262. n = 490, р = 0,6, k1 = 320, k2 = 350.

263. n = 640, р = 0,9, k1 = 500, k2 = 540.

264. n = 225, р = 0,2, k1 = 50, k2 = 60.

265. n = 810, р = 0,4, k1 = 340, k2 = 400.

266. n = 250, р = 0,7, k1 = 150, k2 = 180.

267. n = 300, р = 0,3, k1 = 110, k2 = 130.

268. n = 625, р = 0,8, k1 = 480, k2 = 500.

269. n = 100, р = 0,5, k1 = 60, k2 = 80.

270. n = 256, р = 0,9, k1 = 200, k2 = 220.

 

В задачах 271—280 задан закон распределения дискретной случайной величины Х (в первой строке указаны возмож­ные значения величины X, во второй строке даны вероятноcти Pэтих значений). Найти: 1) математическое ожидание МХ; 2) дисперсию DX; 3) среднее квадратическое отклонение s:

 

271.

X        
P 0,3 0,4 0,2 0,1

272.

X        
P 0,2 0,1 0,3 0,4

273.

X        
P 0,3 0,1 0,2 0,4

274.

X        
P 0,1 0,2 0,4 0,3

275.

X        
P 0,3 0,3 0,2 0,2

276.

X        
P 0,5 0,1 0,2 0,2

277.

X        
P 0,2 0,1 0,4 0,3

278.

X        
P 0,2 0,5 0,2 0,1

279.

X        
P 0,4 0,3 0,2 0,1

280.

X        
P 0,2 0,3 0,2 0,3

 

В задачах 281—290 случайная величина Х задана интегральной функцией распределения F(х). Найти: 1) дифференциальную функцию распределения f(х); 2) математическое ожидание МХ; 3) дисперсию DХ:

291. Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание разме­ра детали равно 200 мм, среднее квадратичеcкое отклонение равно 0,25 мм. Стандартными считаются детали, размер которых заключен между 199,5 мм и 200,5 мм. Найти процент стандартных деталей.

292. Средний диаметр стволов деревьев на некотором участке равен 25 см, среднее квадратическое отклонение рав­но 5 см. Считая диаметр ствола случайной величиной, рас­пределенной нормально, найти процент деревьев, имеющих диаметр свыше 20 см.

293. Процент всхожести семян равен 90%. Оценить веро­ятность того, что из 1 000 посеянных семян взойдет от 850 до 950 семян включительно.

294. Среднее квадратическое отклонение нормально рас­пределенной случайной величины равно 0,5. Найти вероят­ность того, что отклонение случайной величины от ее мате­матического ожидания по абсолютной величине не превосхо­дит 1.

295. Длина детали представляет собой нормально распре­деленную случайную величину с математическим ожиданием 150 мм и средним квадратическим отклонением 0,5 мм. Ка­кую точность размера детали можно гарантировать с веро­ятностью 0,95.

296. Средний вес зерна равен 0,2 г, среднее квадратическое отклонение равно 0,05 г. Определить вероятность того, что вес наудачу взятого зерна окажется в пределах от 0,16 г до 0,22 г, если вес зерна подчиняется закону нормального распределения.

297. Норма высева семян на 1 га равна 200 кг. Фактический расход семян на 1 га колеблется около этого значения со средним квадратическим отклонением 10 кг. Определить вес семян, обеспечивающих посев на площади 100 га с гарантией 0,95. Принять закон нормального распределения.

298. Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно 0,25 мм. Стандартными считаются детали, размер ко­торых заключен между 199,5 мм и 200,5 мм. Из-за наруше­ния технологии точность изготовления деталей уменьшилась и характеризуется средним квадратическим отклонением 0,4 мм. На сколько повысился процент бракованных дета­лей?

299. Масса яблока, средняя величина которой равна 150 г., является нормально распределенной случайной величиной со средним квадратическим отклонением 20 г. Найти вероят­ность того, что масса наугад взятого яблока будет заключе­на в пределах от 130 до 180 г.

300. Устройство состоит из 20 однотипных независимо работающих элементов. Вероятность безотказной работы каждого элемента за 10 часов равна 0,9. Оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом отказов за 10 часов окажется меньше двух.

 

В задачах 301—310 заданы комплексные числа. Требуется: а) выполнить действия над комплексными числами и записать ответ в алгебраической форме; б) найти все значения корня и представить ответ в алгебраической форме:

 

  а) б)
 
 
 
 
 
 
 
 
 
 

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 1474; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.