КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Двухтактные схемы и основы их расчета
Временные диаграммы
При выборе схемы построения импульсного источника электропитания разработчик в первую очередь руководствуется ожидаемыми габаритными размерами и простотой схемотехнических решений. Сетевые источники, питающие нагрузки небольшой мощности (до 100—150 Вт), встраиваемые в достаточно габаритную аппаратуру, лучше строить по однотактной fly-back схеме. Для стабилизаторов, в которых не требуется гальванической развязки нагрузки от питающей сети, применяют чопперную схему. При питании от гальванических элементов или аккумуляторов можно использовать бустерную схему. Однако не исключены ситуации, в которых перечисленные преобразователи и стабилизаторы использовать нельзя. Случай первый — прибор, питаемый от сети переменного тока, имеет ограниченные габариты (к примеру, в приборном корпусе не удается разместить достаточно крупный накопительный трансформатор фли-бак конвертора). Второй случай - - потребляемая мощность прибора превышает 150...200Вт. Третий случай — отдельные части схемы прибора требуют дополнительного питания, гальванически развязанного от остальной схемы. Во всех этих случаях требуется разработка так называемых двухтактных схем преобразователей, имеющих гальваническую развязку первичной и вторичной цепей. Наибольшее распространение среди двухтактных конверторов получили три схемы: двухфазная пуш-пульная (push-pull), полумостовая (half-bridge) и мостовая (full-bridge). Достоинство этих схем состоит в том, что при необходимости разработчик может легко ввести в конструкцию узел стабилизации выходного напряжения, либо отказаться от него. В первом случае конвертор будет представлять собой полноценный источник питания, к которому можно подключать любую нагрузку. Во втором случае получится простой преобразователь электрической энергии, требующий дополнительной стабилизации по выходу. В ряде случаев такой простой конвертор вполне устроит разработчика. Поскольку все три схемы двухтактных конверторов имеют множество аналогий, мы расскажем о них в одной главе, акцентируя внимание на индивидуальных особенностях и проводя сравнительный анализ. Пуш-пульная двухфазная схема Рис. 14.1. Базовая двухтактная push-pull схема преобразователя
Эта схема (рис. 14.1) состоит из двух ключевых элементов, в качестве которых используются мощные биполярные или полевые транзисторы. Трансформатор Тр имеет первичную и вторичную обмотки, разделенные на полуобмотки. К средней точке первичной обмотки подключен вывод источника питания. Вторичная цепь представляет собой двухфазный двухполупериодный выпрямитель VD1, VD2, а также фильтр пульсаций (в этой схеме элементом фильтра является конденсатор Сф). В первом такте, как показано на рис. 14.2, l замкнут, Кл2 разомкнут, ток течет по полуобмотке 1.1 и трансформируется в полуобмотку 2.1. Диод VD1 открыт и проводит ток i2.1, подзаряжая конденсатор Сф. Во втором такте, изображенном на рис. 14.3, ключ Кл.l закрывается и открывается ключ Кл2. Соответственно ток i1.2 течет по
Таким образом, передача энергии в нагрузку осуществляется во время обоих тактов. Отсюда: где γ — отношение времени открытого состояния одного ключа к периоду коммутации. Рис. 14.4. К определению коэффициента заполнения
Рис. 14.5. Графики, поясняющие работу пуш-пульной схемы преобразователя
Таким образом, регулируя γ в промежутке от 0 до 0,5, можно линейно регулировать напряжение на нагрузке. В реальной схеме ни вкоем случае нельзя допускать, чтобы преобразователь работал с γ = 0,5. Типичное значение γ не должно превышать 0,4...0,45. Все дело в том, что используемые элементы не могут обладать идеальными свойствами. Как нам известно, первичная обмотка обладает ограниченной индуктивностью Lμ, которая накапливает энергию: Рис. 14.6. К пояснению коммутационных процессов в реальной схеме пуш-пульного
Рис. 14.8. Разряд индуктивности намагничения
При работе пуш-пульного преобразователя разрядные диоды включаются попеременно. Следует также помнить, что в составе транзисторов MOSFET, а также некоторых транзисторов IGBT эти диоды уже есть, поэтому вводить дополнительные элементы нет необходимости. Вторая неприятность связана с конечным временем восстановления диодов выпрямителя. Представим, что в начальный момент времени диод VD1 проводит ток. Направления действия ЭДС показаны на схеме «а» (рис. 14.9). Рис. 14.9. Пояснение влияния конечного времени восстановления выпрямительных диодов
Рис. 14.10. Характер тока обмоток трансформатора в случае наличия идеальных и реальных выпрямительных диодов
Во избежание коммутационных выбросов необходимо, во-первых, вводить паузу между закрытием Кл1 и открытием Кл2 на время не менее чем удвоенное время обратного восстановления диода tгг. Во-вторых, если есть возможность, лучше отказаться от обычных диодов и применить диоды Шоттки. Напряжение на закрытом ключевом транзисторе складывается из напряжения питания Un и ЭДС первичной полуобмотки, которая в данный момент разомкнута. Поскольку коэффициент трансформации этих обмоток равен 1 (обмотки с одинаковым числом витков), перенапряжение на ключевом транзисторе достигает 2 Un. Поэтому, выбирая транзистор, следует обратить внимание на допустимое напряжение между его силовыми электродами. Необходимо также учитывать, что ток ключевого транзистора складывается из постоянного тока нагрузки, пересчитанного в первичную цепь, и линейно нарастающего тока намагничения индуктивности первичной обмотки. Ток имеет трапецеидальную форму.
При определении максимального коэффициента заполнения в случае использования полевых транзисторов, которые переключаются достаточно быстро, нужно руководствоваться значением задержки обратного восстановления диодов. Промежуток времени, в течение которого переключение запрещено: ∆tзад = 2trr. Опыт показывает, что1 коэффициент заполнения не превышает 0,45 в самом благоприятно^ случае.
Рис. 14.11. Учет паразитных параметров схемы
а) Выпрямительные диоды: в открытом состоянии на диоде падает в среднем 0,7...1,0 В (стандартный диод), либо 0,5...0,6 В (диод Шоттки); б) Ключевые транзисторы: если в качестве ключа используется биполярный транзистор или транзистор IGBT, на ключе будет падать напряжение Uкэ (в режиме насыщения). Типичное значение напряжения насыщения — 0,2...0,5 В. Для транзистора MOSFET необходимо вычислить напряжение: Иначе (с учетом падения напряжения на ключах и выпрямительных диодах): К примеру, если проектируется преобразователь с батарейным питанием, в качестве этого напряжения можно принять значение напряжения, измеренное на клеммах батареи в конце срока службы. где ηтр — КПД трансформатора (типичное значение 0,95...0,97) Разработчиком должно быть выполнено условие: Определить температуру перегрева трансформатора можно по следующей формуле: Тп — температура поверхности трансформатора; Рп — суммарные потери тепла (на активном сопротивлении обмотки и в магнитопроводе); Sохл -- площадь наружной поверхности трансформатора; α-- коэффициент теплоотдачи (α = 1,2 • 10-3 Вт/см2 • °С). После расчета трансформатора нужно провести выбор силовых элементов по допустимым значениям токов и напряжений, облегчить при необходимости тепловой режим с помощью теплоотводящих радиаторов. Очень важный вопрос, который сейчас необходимо рассмотреть, — это выбор схемы управления двухтактным импульсным источником. Не так давно все эти схемы приходилось проектировать на дискретных элементах, что рождало достаточно громоздкие и не слишком надежные решения. Микросборки, применяющиеся для управления однотактными схемами стабилизаторов и преобразователей, впрямую не годятся для использования в двухтактных схемах, поскольку нужно иметь, два парафазных выхода, управляемых одним генератором. Кроме того, микросхема должна содержать специальный узел для гарантированного ограничения у, чтобы не допустить аварийных ситуаций и сквозных токов. Желательно наличие дополнительных входов защитного отключения. В последнее время было разработано большое количество специализированных микросхем, в которых уже есть практически все необходимые узлы. Широко применяющаяся для управления блоками питания компьютеров типа IBM-PC микросхема TL494 (выпускается фирмой Texas Instruments, имеет отечественный аналог КР1114ЕУ1) подробно описана в доступной книге [54]. Как пример, рассмотрим не менее интересную микросхему СА1524 [53], выпускаемую фирмой Intersil. Эта микросхема содержит в своем составе цепи управления, контроля, нормально функционирует при питании от 8 до 40 В. Она может быть применена в составе любых схем стабилизаторов и преобразователей, описанных в этой книге. Основные узлы микросхемы (рис. 14.12): • термокомпенсированный опорный источник напряжения 5 В; • точный RC-генератор; • усилитель ошибки (разницы между требуемым напряжением нагрузки и реальным напряжением на выходе стабилизатора); • компаратор схемы управления ключевыми транзисторами; • усилитель ошибки по сигналу тока в первичной цепи; • схема дистанционного управления включением/выключением.
Рис. 14.12. Функциональные узлы микросхемы СА1524 фирмы Intersil
Широтно-импульсное регулирование (ШИР) было рассмотрено нами в главе, посвященной чопперной схеме стабилизатора. В данном случае схема ШИР работает точно так же. Единственную особенность составляют триггер и схема логики, которые «маршрутизируют» управляющие импульсы, поочередно направляя их то на один выход (транзистор Sa), то на другой (транзистор Sb). Триггер синхронизирован тактовыми импульсами с задающего генератора. Тактовые импульсы имеют некоторую длительность, которая служит для организации защитной паузы между выключением одного силового транзистора и включением второго. Таким образом, коэффициент заполнения утах не может быть более 0,45 (суммарное время паузы по двум выходам составляет 10%). Время паузы (dead time) можно регулировать, выбирая соответствующий номинал времязадающего конденсатора Ст. Частота работы задающего генератора определяется соотношением rt и Ст (выбор этих элементов, показанных на рис. 14.13, осуществляется из графика, рис. 14.14). Можно заметить, что ощутимые значения времени паузы получаются при достаточно больших номиналах емкости Ст. Если элементы времязадающей цепи уже выбраны, «мертвое время» можно подрегулировать в пределах 0,5...5,0 мкс подключением конденсатора Cd к выводу 3, как показано на рис. 14.15. Величина этого конденсатора находится в пределах 100...1000 пФ. Однако такой способ разработчики схемы рекомендуют использовать только в крайнем случае. Рис. 14.13. Элементы частотозада-ющей цепи Рис. 14.14. График выбора элементов времязадающей цепи
Еще один способ регулирования dead time заключается в ограничении величины напряжения усилителя ошибки (рис. 14.16). Усилитель ошибки (выводы 1, 2, 9) имеет коэффициент усиления 80 dB (10000) и может быть снижен до необходимой величины включением резистора RL между выводами 1(2) и 9 (в зависимости от того, прямая или инвертирующая схема включения используется разработчиком импульсного источника). Частота единичного усиления усилителя ошибки f -- 3 МГц. Разработчики микросхемы отмечают, что усилитель ошибки, не охваченный цепью обратной связи, имеет так называемый полюс передаточной характеристики в точке 250 Гц (сдвиг фаз между входным и выходным сигналом на этой частоте достигает 45 градусов). Полюс хорошо видно на графике (рис. 14.18). Это еще одна причина, по которой нельзя использовать усилитель без цепей обратной связи, показанных на рис. 14.17. Рис. 14.16. Способ регулировки dead time посредством ограничения величины напряжения усилителя ошибки Рис. 14.17. Обратная связь в усилителе ошибки
Источник без обратной связи может превратиться в генератор. Чтобы устранить возможность самовозбуждения, рекомендуется под-, ключать к выводу 9 корректирующую цепочку, как показано на. рис. 14.19.
Параметры микросхемы СА1524: • напряжение питания 8...40 В; • максимальная частота задающего генератора — 300 кГц; • нестабильность выходного напряжения — не более 1 %; • температурная нестабильность — не более 2%; • диапазон емкости Ст — 0,001...0,1 мкФ; • диапазон сопротивления rt — 1,8...120 кОм; • входное смещение усилителя ошибки — 0,5 мВ; • входной ток усилителя ошибки — 1 мкА; • максимальное напряжение «коллектор-эмиттер» транзисторов Sa и Sb —40B; • токовая защита срабатывает при превышении тока потребления микросхемы более 100 мА; • время нарастания тока коллектора транзисторов Sa и Sb -0,2 мкс; • время спада тока коллектора транзисторов Sa и Sb — 0,1 мкс. Микросхема имеет также вход внешнего управления (вывод 10). Отключение происходит при подаче высокого уровня (номинальный ток 0,2 мА). Мы вернемся к микросхеме СА1524 при практической разработке экспериментального пуш-пульного преобразователя, а сейчас рассмотрим появившиеся в последнее время маломощные интегрированные источники, построенные по пуш-пульной схеме. Нужда в маломощном преобразователе появляется тогда, когда необходимо получить напряжение, источник которого не имеет гальванической связи с остальной схемой. К примеру, цифровые устройства передачи информации по длинным линиям нуждаются в таких источниках. Помеха, наведенная в длинной линии, может повредить передающее и приемное устройства, поэтому линия связи развязывается с помощью согласующих трансформаторов или оптоэлектронных приборов. Активные согласующие линейные устройства требуют питания. Второй пример использования гальванически развязанных источников гораздо ближе к тематике книги. Чуть позже мы будем рассматривать так называемый бутстрепный метод управления двухтактными каскадами. Мы увидим, что в данной схеме нужен источник, гальванически развязанный с общим проводом. В динамическом режиме эту функцию, как окажется, с успехом может выполнить конденсатор. А вот в статическом режиме без нормального источника не обойтись. Еще совсем недавно эта задача решалась с помощью дополнительной; обмотки на сетевом трансформаторе, что, конечно, не способствовало уменьшению габаритов схемы. Появление миниатюрных преобразователей изящно решило эту проблему [55]. Для примера разберем устройство микросхемы DCP0115 фирмы] Burr-Brown [56], функциональные узлы которой показаны на рис. 14.20, а внешний вид — на рис. 14.21. В составе микросхемы имеется высокочастотный генератор и двухтактный каскад, работающий; с частотой 400 кГц. К силовому каскаду подключен миниатюрный трансформатор, который, тем не менее, позволяет получить мощность 1 Вт на нагрузке (при выходном напряжении 15 В). Имеются также схема мягкого старта и схема блокировки при перегреве с возможностью восстановления после отключения. Выводы синхронизации' (sync in, sync out) используются, когда микросхема работает совместно с другими импульсными источниками, имеющимися в приборе. Синхронизация позволяет избежать биения частот и снизить излучаемые радиопомехи. Микроисточник выполнен в корпусе DIP-14.
Дата добавления: 2014-11-28; Просмотров: 11356; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |