КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гидравлические характеристики трубопроводов
Расходная характеристика трубопровода (модуль расхода) Классификация трубопроводов Гидравлический расчет трубопроводов В зависимости от соотношения линейных и местных потерь трубопроводы делятся на короткие и длинные, в зависимости от конструкции гидравлической системы - на простые и сложные. короткие трубопроводы – это трубопроводы сравнительно небольшой длины, на которых смонтировано значительное количество местных сопротивлений и поэтому местные потери сопоставимы с линейными. Это, например, системы объемных гидравлических приводов всех назначений, системы смазки различных устройств. Кроме того, это трубопроводы, некорректный расчет которых может вызвать отказ работы устройства (сифоны, всасывающие линии насосов и т.п.). при расчете коротких трубопроводов учитываются как линейные, так и местные потери: hсум = Σhл.п+Σhм.п. задачи решаются с применением уравнений неразрывности и Д.Бернулли для потока реальной жидкости. Длинные трубопроводы – это трубопроводы значительной длины, в которых линейные потери являются основными. Это водопроводные системы всех назначений, нефтепроводы и т.п. системы. При расчете таких трубопроводов определяются только линейные потери, а на местные добавляют 5…10% от линейных, т.е. hсум = (1,05…1,1)hл.п. Простые трубопроводы – это трубопроводы, как правило, одного диаметра, не имеющие ответвлений. Сложные трубопроводы имеют различного рода ответвления или состоят из нескольких линий (параллельного соединения, тупиковые, замкнутые, или кольцевые).
Вспомним формулу линейных потерь – формулу Дарси – Вейсбаха: . Выразим в этой формуле скорость V через расход Q из соотношения : . (6.1) Для трубопровода определенного диаметра комплекс величин в выражении (6.1) можно считать величиной постоянной (1/К2), кроме коэффициента гидравлического трения λ. На основании понятия среднеэкономической скорости Vс.э покажем, что и указанный коэффициент λ можно отнести к этому комплексу, т.к. в этом случае, число Рейнольдса будет иметь определенное значение: , и на графике Никурадзе коэффициент λ в этом случае будет иметь конкретное значение. Обоснуем правомерность введения понятия среднеэкономической скорости следующими рассуждениями. Гидравлическую систему, например водопроводную, для пропуска определенного расхода можно выполнить из труб разного диаметра. При этом с увеличением диаметра d, следовательно, уменьшением скорости V капитальные затраты будут расти, а эксплуатационные затраты будут уменьшаться из-за снижения гидравлических потерь. Скорость, при которой суммарные затраты будут иметь минимальное значение, будем называть среднеэкономической скоростью Vс.э = 0,8…1,3 м/с (рис.6.1). рис.6.1 Тогда формула линейных потерь (6.1) примет вид , (6.2) где К – расходная характеристика трубопровода (модуль расхода), зависит от материала трубопровода, диаметра и расхода. берется из таблиц.
Гидравлической характеристикой трубопровода называется зависимость напора, который необходимо создать в трубопроводе для пропуска по нему определенного расхода, т.е. Н=f(Q). Рассмотрим некоторые особенности этой характеристики. 1. Представим себе горизонтальный трубопровод длиной l и диаметром d, питаемый, например, от насоса с постоянным расходом Q (рис.6.2). рис. 6.2 Составив уравнение Бернулли для сечений 1-1 и 2-2, получим, что напор в сечении 1-1 тратится на преодоление линейных потерь hл.п, т.е. Н = hл.п.. тогда формулу (6.2) представим в виде . (6.3) Обозначим . Для конкретного трубопровода это будет постоянная величина, тогда выражение (6.3) примет вид . (6.4) Такая явно квадратичная зависимость свойственна только турбулентному режиму движения (рис.6.3). рис. 6.3 Из рис. 6.3 видно, что, например, для пропуска расхода Qi в трубопроводе необходимо создать напор Нi. 2.Допустим, что насос подает жидкость в трубопровод с преодолением статического напора Нст (рис.6.4). рис. 6.4 Сначала характеристика совпадает с линией ОН (ординатой). Дальнейшее увеличение напора расходуется на преодоление гидравлических сопротивлений hп, которые увеличиваются с увеличением расхода Q. Таким образом, аналитическое выражение такой характеристики будет иметь вид . (6.5) 3. мы имеем, например, семейство характеристик 1,2,3 (рис.6.5). Простой анализ позволяет сделать вывод, что они принадлежат трубопроводам различного диаметра, т.е. d1>d2>d3. Таким образом, например, трубопровод 1 может пропустить больший расход при меньшем напоре, чем трубопроводы 2 и 3.
Рис. 6.5 Рис. 6.6
4. Гидравлическую характеристику трубопровода определенного диаметра можно изменить, например, с помощью задвижки. В выражении Н=ВQ2 изменяется коэффициент В. Задвижкой в этом случае вводится дополнительное сопротивление, эквивалентное определенной длине трубопровода (рис.6.6). 5. Примем, что насос подает жидкость в трубопровод с верхнего бака в нижний (рис.6.7), т.е. имеет место «отрицательного» статического напора. В этом случае напор Н` без насоса обеспечит расход в трубопроводе Q`. Для увеличения расхода подключается насос. Рис. 6.7 6. гидравлическая сеть состоит из нескольких трубопроводов различного диаметра и длины, соединенных последовательно (рис.6.8). Рис. 6.8 Очевидно, что ; ; . (6.6) Суммарную характеристику можно получить по выражению (6.6) или построением характеристик отдельных ее участков 1,2 и 3 с последующим графическим их сложением (рис.6.9). Рис. 6.9 7. гидравлическая сеть состоит из нескольких трубопроводов различного диаметра и длины, соединенных параллельно (рис. 6.10). Рис. 6.10 Очевидно, что . В точках А и В напор одинаков для трубопровода с расходом Q1 и Q2. следовательно, падение напора в каждой ветке одинаково, т.е. Н=Н1=Н2 или . (6.7) Суммарную характеристику получают построением характеристик отдельных ее участков с последующим графическим их сложением (рис.6.11). Рис. 6.11
Дата добавления: 2014-12-16; Просмотров: 8374; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |