КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример К2
Механизм (рис. К2,а) состоит из стержней 1, 2, 3, 4 и ползуна , соединенных друг с другом и с неподвижными опорами и шарнирами. Дано: , , , , , , м, м, м, с-1, с-2 (направления и – против хода часовой стрелки). Определить: , , , . Решение: 1. Строим положение механизма в соответствии с заданными углами и выбранным масштабом длин (рис. К2,б; на этом рисунке изображаем все векторы скоростей). 2. Определяем . Точка принадлежит стержню . Чтобы найти , надо знать скорость какой-нибудь другой точки этого стержня и направление . По данным задачи, учитывая направление , можем определить . Численно: м/с, . (1) Направление найдем, учтя, что точка принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня ) на прямую, соединяющую эти точки (прямая ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим , м/с. (2) 3. Определяем . Точка принадлежит стержню . Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость точки , принадлежащей одновременно стержню . Для этого, зная и , строим мгновенный центр скоростей (МЦС) стержня . Это точка , лежащая на пересечении перпендикуляров к и , восставленных из точек и (к перпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня вокруг МЦС . Вектор перпендикулярен отрезку , соединяющему точки и , и направлен в сторону поворота. Величину найдем из пропорции: . (3) Чтобы вычислить и , заметим, что – прямоугольный, так как острые углы в нем равны 30° и 60°, и что . Тогда является равносторонним и . В результате равенство (3) дает м/с, . (4) Так как точка принадлежит одновременно стержню , вращающемуся вокруг , то . Тогда, восставляя из точек и перпендикуляры к скоростям и , построим МЦС стержня . По направлению вектора определяем направление поворота стержня вокруг центра . Вектор направлен в сторону поворота этого стержня. Из рис. К2,б видно, что , откуда . Составив теперь пропорцию, найдем, что , м/с. (5) 4. Определяем . Так как МЦС стержня 2 известен (точка ) и м, то с–1. (6) 5. Определяем (рис. К2,в, на котором изображаем все векторы ускорений). Точка принадлежит стержню 1. Полное ускорение точки разложим на тангенциальную и нормальную составляющие: , где численно м/с2, м/с2. (7) Вектор направлен вдоль , а – перпендикулярно . Изображаем эти векторы на чертеже (см. рис. К2в). Вычисляем м/с2. Ответ: м/с, м/с, с–1, м/с2. КОНТРОЛЬНЫЕ ВОПРОСЫ Задача С1 1) Основные виды силовых воздействий и их свойства: – сосредоточенная сила (проекции силы на оси; момент силы относительно точки как характеристика вращательного действия силы; величина и знак алгебраического момента; – вращающий момент (пара сил), изображение пары на плоскости, момент пары; – распределенные силы с постоянной интенсивностью (эпюра распределенных сил, приведение к равнодействующей). 2) Силы активные и реакции связей. Внешние закрепления конструкции (подвижный и неподвижный цилиндрические шарниры, скользящая заделка – втулка, жесткая заделка, невесомый стержень, нить, идеальная поверхность). Как направлены реакции этих связей? Сколько неизвестных составляющих реакции имеет каждая из перечисленных связей? В каком случае реакция связи содержит вращающий момент? 3) Виды представленных в конструкциях соединений тел между собой. Метод разбиения. Внутренние двусторонние и односторонние связи. 4) Каковы аналитические условия равновесия произвольной плоской системы сил? 5) Статическая определимость и неопределимость конструкции. Какие дополнительные условия представлены в задаче, которые делают конструкцию статически определимой? Как определяется статическая определимость в сочлененных конструкциях? Задача К1 1) Координатный способ задания движения точки. 2) Определение скорости точки. Нахождение скорости при координатном способе задания движения. 3) Определение ускорения. Разложение ускорения на касательную и нормальную составляющие. 4) Естественный способ изучения движения. Определение кинематических характеристик в естественных координатах. Задача К2 1) Виды движений различных звеньев плоского механизма задачи К2. 2) Поступательное движение. 3) Вращательное движение вокруг неподвижной оси (центра ). Угловая скорость и угловое ускорение вращающихся звеньев. Как направлены и чему равны скорости точек вращающегося тела? 4) Плоскопараллельное движение. Мгновенный центр скоростей и его свойства. Как найдены МЦС звеньев механизма задачи? 5) Как формулируется теорема о проекциях скоростей двух точек тела? Как она используется для нахождения скоростей различных точек механизма?
Дата добавления: 2014-12-16; Просмотров: 532; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |