КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Полевые транзисторы. Схемы включения, работа, характеристики, параметры
Полевой транзистор с управляющим р-п- переходом - это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-п - переходом, смещенным в обратном направлении. Электрод, из которого в канал входят носители заряда, называют истоком; электрод, через который из канала уходят носители заряда, - стоком; электрод, служащий для регулирования поперечного сечения канала, - затвором. При подключении к истоку отрицательного (для п-канала), а к стоку положительного напряжения (рис. 1) в канале возникает электрический ток, создаваемый движением электронов от истока к стоку, т.е. основными носителями заряда. В этом заключается существенное отличие полевого транзистора от биполярного. Движение носителей заряда вдоль электронно-дырочного перехода (а не через переходы, как в биполярном транзисторе) является второй характерной особенностью полевого транзистора. Электрическое поле, создаваемое между затвором и каналом, изменяет плотность носителей заряда в канале, т.е. величину протекающего тока. Так как управление происходит через обратно смещенный р-п-переход, сопротивление между управляющим электродом и каналом велико, а потребляемая мощность от источника сигнала в цепи затвора ничтожно мала. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению. Полевой транзистор в качестве элемента схемы представляет собой активный несимметричный четырехполюсник, у которого один из зажимов является общим для цепей входа и выхода. В зависимости от того, какой из электродов полевого транзистора подключен к общему выводу, различают схемы: с общим истоком и входом затвор; с общим стоком и входом на затвор; с общим затвором и входом на исток. Полевыми называют транзисторы, у которых ток обусловлен носителями заряда одного знака (электронами или дырками), а управление током осуществляют при помощи электрического поля. Их подразделяют на транзисторы с управляющим р-n переходом и с изолированным затвором. Полевой транзистор с управляемым р-n переходом с n-каналом имеет три электрода: затвор (З), сток (С), исток (И). Область соединяющая исток и сток, называют каналом. Подложка (П) соединяется с затвором. У транзисторов с р-каналом подложка и подзатворная область имеет проводимость n-типа, а на электроде затвора стрелка направлена наружу. I U Передаточная х-ка.
У полевого транзистора с изолированным затвором м встроенным n-каналом существует без потенциалов на электродах.
19. Обратные связи в усилителях. Под обратной связью в усилителях понимают воздействие электрической цепи усилителя, при котором часть выходного сигнала подается на вход усилителя. Обратные связи в усилителях обычно создают специально, но иногда они возникают за счет паразитных ёмкостей, внутренних сопротивлений источников питания и др. Такие обратные связи называют паразитными. Если при наличии обратной связи входной сигнал складывается с сигналом обратной связи, в результате чего в усилитель поступает увеличенный сигнал, то такую обратную связь называют положительной. Если после введения обратной связи сигналы на входе и на выходе усилителя уменьшаются, что обусловлено вычитанием сигнала обратной связи из входного сигнала, то такую обратную связь называют отрицательной. Различают последовательные обратные связи, когда цепи обратной связи включают последовательно с входными цепями усилителя, и параллельные обратные связи, когда цепи обратной связи включают параллельно входным цепям усилителя. Обратные связи подразделяют на обратные связи по напряжению и по току. Положительная обратная связь повышает коэффициент усиления усилителя, но практически не применяют в электронных усилителях т.к. ухудшается стабильность коэффициента усиления. Отрицательную обратную связь, несмотря на снижение коэффициента усиления, широко используют в усилителях, т.к. 1) повышается стабильность коэффициента усиления усилителя при изменениях параметров транзисторов; 2) снижается уровень нелинейных искажений; 3) увеличивается входное и уменьшается выходное сопротивления усилителя.
21. Операционный усилитель. Обратные связи. Операционным усилителем (ОУ) называется усилитель напряжения, предназначенный для выполнения различных операций с аналоговыми сигналами. Идеальный ОУ является идеальным источником ЭДС, управляемым дифференциальным напряжением с бесконечно большим коэффициентом усиления. ОУ имеет два входа, выход и два вывода для подключения источников питания (рис. 10.20). Инвертирующий вход обозначается знаком «-» или кружком, неинвертирующий - знаком «+» или без знака рядом с инвертирующим. Положительное и отрицательное напряжения питания имеют одинаковую по модулю величину и отсчитываются от вывода, который является общим для входных и выходного сигналов. Идеальный ОУ имеет бесконечно большое входное сопротивление (нулевые входные токи); нулевое выходное сопротивление (выход является идеальным источником ЭДС, нагрузка не влияет на выходное напряжение); бесконечно большие коэффициенты подавления синфазного сигнала и усиления дифференциального сигнала; бесконечно большой диапазон частот усиливаемых сигналов
22 Логические элементы. Основные логические операции: И, ИЛИ, НЕ. Логические элементы вместе с запоминающими элементами составляют основу устройств цифровой (дискретной) обработ- ки информации — вычислительных машин, цифровых измерительных приборов и устройств автоматики. Логические элеметы выполняют простейшие логические операция над цифровой информацией, а запоминающие элементы служат для ее хранения.
Логическая операция преобразует но определенным правилам входную информацию в выходную. Логические элементы чаще всего строят на базе электронных устройств, работающих в ключевом режиме. Поэтому цифровую информацию обычно представляют в двоичной форме, в которой сигналы принимают только два значения: "0" («логический нуль») и "1" («логическая единища) соответствующие двум состояниям ключа. Логические преобразования двоичных сигналов включают три элементарные операций: 1) логическое сложение (дизъюнкцию), либо операцию ИЛИ, обозначаемую знаками "\/" или «+»: 2) логическое умножение (конъюнкцию), либо операцию И обозначаемую знаками "/\", "-" или написанием переменных рядом без знаков разделения: 3) логическое отрицание (инверсию), либо операцию НЕ, обозначаемую чертой над переменной: Правила выполнения логических операций над двоичными переменными для случая двух переменных имеют следующий вид: Самостоятельное значение имеет логическая операция ЗАПРЕТ, которая оимволически записывается в виде Логические элементы, реализующие операцию ИЛИ, называют элементами ИЛИ и обозначают на функциональных схемах, как показано на рис. 10.21, о. Выходной сигнал F элемента ИЛИ равен едини- це, если хотя бы на один из л входов подан сигнал Логические элементы, реализующие онерацио И, называют элементами И, либо схемами совпадения и обозначают, как показано на ряс. 10.21, б. Выходной сигyал F элемента И равен единице, если одновременно на все n входов подан сигнал «1». Операция НЕ реализуется логическим элементом НЕ или инвертором, обозначение которого приведено на рис. 10.21, а.Логический элемент ЗАПРЕТ имеет в простейшем случае лишь два входа, называемые разрешающим (вход Х1) и запрещающим (вход X2). Выходной сигнал повторяет сигнал на разрешающем входе X1, если X2 = 0. При Х1 = 1 на выходе возникает сигнал "0" независимо от значения Х1. Стандартное условное обозначение элемента ЗАПРЕТ приведено на рис. 10.21, г. Помимо рассмотренных логических элементов на практике широко применяют комбинированные элементы, реализующие две и более логических операций, например элементы И—НЕ (рис. 10.21, д),_ИЛИ—— НЕ (ряс. 10.21, е). Первый из них выполняет операцию а второй — операцию Логические элементы обычно выполняют на полупроводниковых приборах, а в последнее время — на интегральных микросхемах. В зависимости от вида используемых сигналов логические элементы делят на потенциальные иимпульсные. В потенциальных элементах логические "0" и "1" представляются двумя разными уровнями электрического потенциала, а в импульсных — наличием или отсутствием импульсов. Наибольшее распространение получили потенциальные элементы.
Простейшие логические элементы И и ИЛИ могут быть построены на основе диодных ключей. В качестве элемента НЕ обычно служит транзисторный ключ (см. рис. 10.13, о), обладающий инвертирующими свойствами. В зависимости от компонентов, из которых построены логические элементы И или ИЛИ, различают четыре типа логических элементов (четыре типа «логики»): 1) резисторно транзисторные (РТЛ); 2) днодно-транзнсторные (ДТЛ); 3) транзисторно-транзисторные (ТТЛ); 4) транзисторные (ТЛ). Логические элементы – элементы дискретного действия преобразующие входной сигнал по законам алгебры-логики. Логические элементы выполняются в виде интегральных микросхем и имеют 1 или более входов и 1 выход. Входные переменные – х, выходные – у. На входе и на выходе могут быть низкое (логический 0) и высокое (логическая 1) напряжение. Uвх(0)= Uвых(0)<0,2Eп – низкий уровень сигнала Uвх(1)= Uвых(1)>0,8Eп – высокий уровень сигнала y=f(x), N=2m= ,N – количество логических функций, n – число независимых переменных, m –число наборов логических переменных. 1. Дизюркция или операция сложения. yI =x1+x2 2. Коньюкция или операция умножения. yII = 3. Операция пирса, отрицание операции сложения. yIII = 4. Операция пирса, отрицание операции умножения. yIV =
24. Техническая реализация логической операции И. Логические элементы вместе с запоминающими элементами составляют основу устройств цифровой (дискретной) обработки информации — вычислительных машин, цифровых измерительных приборов и устройств автоматики. Логические элементы выполняют простейшие логические операции над цифровой информацией, а запоминающие элементы служат для ее хранения. Логическое умножение (конъюнкция), либо операция И, обозначается знаками «^» «.» или написанием переменных рядом без знаков разделения: F=X1 ^ X2 ^ X3 ^…^ Xn Правило выполнения логической операций над двоичными переменными для случая двух переменных имеет следующий вид: Операция И 0 ^ 0 = О 0 ^ 1 = О 1 ^ 0 = О 1 ^ 1 = 1 Логические элементы, реализующие операцию И, называют элементами И, либо схемами совпадения и обозначают, как показано на рис Выходной сигнал Р элемента И равен единице, если одновременно на все n входов подан сигнал 1. В зависимости от вида используемых сигналов логические элементы делят на потенциальные и импульсные. В потенциальных элементах логические «0» н «1» представляются, двумя разными уровнями электрического потенциала, а в импульсных — наличием или отсутствием импульсов. Наибольшее распространение получили потенциальные элементы В зависимости от компонентов, из которых построены логические элементы И или ИЛИ, различают четыре типа логических элементов (четыре типа «логики»): 1) резисторно-транзисторные (РТЛ); 2) диодно-транзисторные (ДТЛ); 3) транзисторно-транзисторные (ТТЛ); 4) транзисторные (ТЛ). Для получения логического элемента И диодную сборку включают по схеме рис 10.24, а, если кодирование сигналов соответствует рис. 10.24, б. Действительно, при сигнале «О» на всех входах все диоды открыты, в них и в резисторе R появляются токи, создаваемые источником э.д.c. E и замыкающиеся через источники сигналов, подключенные ко всем входам. Поскольку сопротивление резистора R значительно больше прямого сопротивления диодов, напряжение на выходе оказывается близким к нулю. Если напряжение на одном из входов соответствует логической «1» (Е > Е1), то соответствующий диод закрывается, однако остальные диоды открыты и на выходе по-прежнему имеется сигнал «О». Сигнал «1» появится на выходе только тогда, когда на все входы будет воздействовать сигнал «1», все диоды окажутся закрытыми, ток через резистор будет равен нулю и uвых == E1. Диодная сборка типа К2ЛП173 хотя и относится к серии 217 гибридных тонкопленочных ДТЛ-элементов, но не содержит транзисторов
Дата добавления: 2014-11-28; Просмотров: 647; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |