Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Табличным способом




Последовательность называется возрастающей (строго), если является возрастающей (строго) числовой функцией, т.е. если .

Последовательность называется убывающей (строго), если – убывающая (строго) числовая функция, т.е. .

Последовательность называется неубывающей, если каждый её член, начиная со второго, не меньше предыдущего, т.е. .

Последовательность (хn) называется невозрастающей, если каждый её член, начиная со второго, не больше предыдущего, т.е. .

Возрастающая и убывающая последовательности называются монотонными последовательностями.

Последовательность называется ограниченной, если существует такие числа m и M, что выполняется неравенство .

Если существует такое число M, что , то последовательность называется ограниченной сверху; если существует такое число m, что , то последовательность называется ограниченной снизу.

Последовательность ограничена тогда и только тогда, когда существует такое положительное число C, что выполняется неравенство

.

 

Пример 1. Определить, является ли число 28 членом последовательности , если .

Решение. Число 28 является членом последовательности, если найдётся такой номер , для которого выполняется равенство . Решим это квадратное уравнение , т.е. , . Числа , значит, число 28 не является членом данной последовательности.

Пример 2. Вычислить первые пять членов последовательности , если . Определить, для каких членов последовательности выполняется условие .

Решение. Подставляя в формулу общего члена значение n =1,2,3,4,5, получим:

; ;

; ;

.

Решим неравенство

Решением этого неравенства будут . Поэтому для любых членов последовательности с номерами от 1 до 20 включительно выполняется условие .

Пример 3. Последовательность задана следующим образом (реккурентно): и . Вычислить первые 4 ее члена.

Решение: Первый члена последовательности известен: . Для вычисления в заданной формуле для положим . Получим

.

Для вычисления в формуле выбираем . Тогда выразится через найденный член :

.

Аналогично:

.

Пример 4. Последовательность задана формулой общего члена: . Задать таблично первые 8 ее членов, изобразить их геометрически и графически.

Решение. Вычислим первые 8 членов заданной последовательности и заполним таблицу.

               
 

Для геометрической иллюстрации изобразим на числовой оси члены последовательности (рис.1)

 

Рис.1

В системе координат укажем точки плоскости, которые имеют координаты для (рис.2).

 

 

Рис. 2

Пример 5. Доказать, что последовательность является строго убывающей.

Решение. Если последовательность строго убывающая, то выполняется неравенство или .

Вычисляем

.

Составим отношение

.

Поскольку

, действительно.

Получаем для любых натуральных n.

Значит, последовательность является строго убывающей.

Пример 6. Исследовать последовательность , на ограниченность.

Решение. Запишем формулу общего члена последовательности следующим образом:

.

Так как и , то , а поэтому

и .

Следовательно, последовательность является ограниченной сверху.

Поскольку неравенство выполняется для всех , то .

Значит, последовательность является также ограниченной снизу.

Приходим к выводу. что – ограниченная последовательность.

 

Задания для самостоятельного решения

 




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 336; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.