Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электромагнетизм 2 страница




.

Учитывая, что I 1= I 2 = I, получим

.

Произведем вычисления:

Рис. 8

 

Сила сонаправлена с силой d , а направление d определяется правилом левой руки.

 

№ 8. Протон, прошедший ускоряющую разность потенциалов U = 600 В, влетел в однородное магнитное поле с индукцией В = 0,3 Тл и начал двигаться по окружности. Вычислить радиус R окружности.

Р е ш е н и е.

Движение заряженной частицы в одно­родном магнитном поле будет происходить по окружности только в том случае, если частица влетит в магнитное поле перпендикулярно линиям индукции: . Так как сила Лоренца перпендикулярна вектору , то она сообщает Рис. 9

частице (протону) нормальное ускорение n.

Согласно второму закону Ньютона,

, (1)

 

где m - масса протона. На рис. 9 совмещена траектория протона с плоскостью чертежа и дано (произвольно) направление вектора скорости . Силу Лоренца направим перпендикулярно вектору к центру окружности (векторы n и сонаправлены.). Используя правило левой руки, определим направление магнитных силовых линий (направление вектора ).

Перепишем выражение (1) в скалярной форме (в проекции на радиус):

F л = ma n. (2)

В скалярной форме F л = qvB sin a. В нашем случае и sin a = 1, тогда F л = qvB. Так как нормальное ускорение a n = v 2/ R, то выражение (2) перепишем следующим образом: qvB = m v 2/ R. Отсюда выразим радиус окружности:

R = mv / (qB). (3)

Скорость протона найдем, воспользовавшись связью между работой сил электрического поля и изменением кинетической энергии протона, т.е. А = D W, или q (j 1 - j 2) = W 2 - W 1, где (j1 - j2) = U - ускоряющая разность потенциалов (или ускоряющее напряжение); W 1 и W 2 - начальная и конечная кинетические энергии протона.

Пренебрегая начальной кинетической энергией протона W 1» 0, и, учитывая, что W к = mv 2/2, получим qU = mv 2/2.

Найдем из этого выражения скорость и подставим ее в формулу (3), в результате получим

(4)

Произведем вычисления:

 

№ 9. Электрон, влетев в однородное магнитное поле(В = 0,2 Тл), стал двигаться по окружности радиуса R = 5 см. Определить магнитный момент р m эквивалентного кругового тока.

Р е ш е н и е.

Электрон начинает двигаться по окружности, если он влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции.

Движение электрона по окружности эквивалентно току, который в данном случае определяется выражением: где е - заряд электрона; Т - период его обращения.

Период обращения можно найти через скорость электрона и путь, проходимый электроном за период Т = (2 pR)/ v. Тогда

(1)

По определению, магнитный момент контура с током выражается соотношением

P m = I эквS, (2)

где S - площадь, ограниченная окружностью, описываемой электроном S = pR 2. Учитывая (1), (2) и (3), получим Р m = или

Известно, что R = mv/(еB) (см. пример 8). Тогда для скорости v электрона находим . Подставив это выражение в (4) для магнитного момента Pm электрона получим

Произведем вычисления:

 

№ 10. Электрон движется в однородном магнитном поле по винтовой линии, радиус R которой равен 1 см и шаг h = 6 см. Определить период Т обращения электрона и его скорость v.

Р е ш е н и е.

Электрон будет двигаться по винтовой линии, если он влетает в однородное магнитное поле под некоторым углом (a ¹ p/2) к линиям магнитной индукции. Разложим, как это показано на рис. скорость электрона на две составляющие: параллельную

Рис. 10 вектору индукции и перпендикулярную ему (). Скорость в магнитном поле не изменяется и обеспечивает перемещение электрона вдоль силовых линий. Скорость в результате действия силы Лоренца будет изменяться только по направлению (в отсутствие параллельной составляющей скорости движение электрона происходило бы по окружности в плоскости, перпендикулярной магнитным силовым линиям). Таким образом, электрон будет участвовать одновременно в двух движениях: равномерном со скоростью и равномерном движении по окружности со скоростью .

Период обращения электрона связан с перпендикулярной составляющей скорости соотношением

. (1)

Найдем отношение R / v ^. Сила Лоренца сообщает электрону нормальное ускорение a n = v 2/ R. Согласно второму закону Ньютона F л = ma n или

(2)

где v ^ = v·sina. Получим соотношение R / v ^ = m / eB и подставим его в формулу (1);

(3)

Произведем вычисления:

Модуль скорости v определяем через v || и v ^: .

Из формулы (2) выразим перпендикулярную составляющую скорости:

Параллельную составляющую скорости v || найдем из следующих соображений. За время, равное периоду обращения Т, электрон пройдет вдоль силовой линии расстояние, равное шагу винтовой линии, т.е. h = Tv ||, откуда v || = h / T. Подставив вместо Т правую часть выражения (3), получим

Таким образом, модуль скорости электрона

Произведем вычисления:

 

№ 11. Альфа-частица прошла ускоряющую разность потенциалов U = 104 В и влетела в скрещенные под прямым углом электрическое (Е = 10 кВ/м) и магнитное (В = 0,1 Тл) поля. Найти отношение заряда q a - частицы к ее массе m, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

Р е ш е н и е.

Для того, чтобы найти отношение заряда q a - частицы к ее массе m, воспользуемся связью между работой сил электрического поля и изменением кинетической энергии частицы: qU = mv2/2, откуда

(1)

Скорость v альфа-частицы определим из следующих соображений. В скрещенных электрическом и магнитном полях на движущуюся частицу действуют две силы: сила Лоренца F л = q направленная перпендикулярно скорости и вектору магнитной индукции ; кулоновская сила F к = qE, сонаправленная с вектором напряженности электростатического поля.

Направим вектор магнитной индукции вдоль оси Оz, а вектор вдоль оси Oy (см. рис.), скорость - в положительном направлении оси Ох, тогда силы и будут направлены так, как показано на рис. 11.

Рис. 11 Альфа-частица не будет испытывать отклонения, если геометрическая сумма сил Кулона и Лоренца будет равна нулю + = 0. В проекции на ось Оу получим равенство (при этом ^ и sin a = 1): qE - qvB = 0, откуда

v = E / B (2)

Подставив (2) в формулу (1), получим

Произведем вычисления:

 

№ 12. Короткая катушка, содержащая N = 103 витков, равномерно вращается с частотой n = 10 с-1 относительно оси АС, лежащей в плоскости катушки и перпендикулярной линиям индукции однородного магнитного поля (В = 0,04 Тл). Определить мгновенное значение э.д.с. индукции e для тех моментов времени, когда плоскость катушки составляет угол a = 600 с линиями поля. Площадь S катушки равна 100 см2.

Р е ш е н и е.

Мгновенное значение э.д.с. индукции ei определяется законом Фарадея

. (1)

Потокосцепление Y = NФ, где N - число витков катушки, пронизываемых магнитным потоком Ф. Подставив это выражение в формулу (1), получим

. (2)

При вращении катушки магнитный поток Ф, пронизывающий катушку, изменяется по закону Ф =BS· cosj = BS· cos wt, где В - магнитная индукция; S - площадь катушки; j - угол между и ; w - угловая скорость вращения.

Подставив в формулу (2) выражение магнитного потока Ф и, продифференцировав по

Рис. 12 времени, найдем мгновенное значение э.д.с. индук­ции: ei = ωNBS· sinw t.

Учитывая, что угловая скорость вращения w катушки связана с частотой вращения n соотношением w = 2p n и что угол w t = p/2 - a (см. рис.), sin (p/2 - a) = cosa, получим ei = 2p nNBS· cos a.

Произведем вычисления: ei = 2×3,14×10×103×0,04×10-2×0,5 = 25,1 В.

№ 13. Квадратная проволочная рамка со стороной а = 5 см и сопротивлением R = 10 мОм находится в однородном магнитном поле (В = 40 мТл). Нормаль к плоскости рамки составляет угол a = 300 с линиями магнитной индукции. Определить заряд q, который пройдет по рамке, если магнитное поле выключить.

Р е ш е н и е.

При выключении магнитного поля произойдет изменение магнитного потока. Вследствие этого в рамке возникнет э.д.с. индукции Возникшая э.д.с. индукции вызовет в рамке индукционный ток, мгновенное значение которого можно определить по закону Ома для полной цепи I i = ei/ R, где R - сопротивление рамки. Тогда .

Так как мгновенное значение силы индукционного тока I i = dq / dt, то предыдущее выражение можно переписать в виде ,

откуда

(1)

Проинтегрировав выражение (1), найдем или .

При выключенном поле Ф 2 = 0, и последнее равенство перепишется в виде q = Ф 1/ R. (2)

По определению магнитного потока Ф 1 = BS· cosa. В нашем случае площадь рамки S = а 2. Тогда

Ф 1 = Ва 2cosa. (3)

Подставив (3) в (2), получим .

Произведем вычисления: .

 

№ 14. Плоский квадратный контур со стороной а = 10 см, по которому течет ток I = 100 А, свободно установился в однородном магнитном поле (В = 1 Тл). Определить работу А, совершаемую внешними силами при повороте контура относительно оси, проходящей через середину его противоположных сторон, на угол j = 900. При повороте контура сила тока в нем поддерживается неизменной.

Р е ш е н и е.

На контур с током в магнитном поле действует момент силы (см. рис. 13)

M = p m B sin j, (1)

где p m = IS= Ia 2 - магнитный момент контура; В - индукция магнитного поля; j - угол между векторами (направлен по нормали к контуру) и .

По условию задачи в начальном положении контур свободно установился в магнитном поле. При этом момент силы равен нулю (М = 0), а значит, угол j = 0, т. е. векторы и сонаправлены. Если внешние силы выведут контур из положения равновесия, то возникший момент сил будет стремиться возвратить контур в исходное положение. Против этого момента и будет совершаться работа внешними силами. Так как момент сил переменный (зависит от угла поворота j), то для подсчета работы применим

Рис. 13 формулу работы в дифференциальной форме dA = Mdj. Учитывая формулу (1), получаем dA = IBa 2sinj d j.

Взяв интеграл от этого выражения, найдем работу при повороте на конечный угол . Работа при повороте на угол j = 900

(2)

Произведем вычисления: А = 100× 1 (0,1)2 = 1 Дж.

Задачу можно решить другим способом.

Работа внешних сил по перемещению контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, пронизывающего контур: А = -IDФ = I(Ф 1 - Ф 2), где Ф 1 - магнитный поток до перемещения, Ф 2 - после. Ф 1 = BS cos00 = BS; Ф 2 = BS cos900 = 0. Следовательно, А = IBS = IBa 2, что совпадает с формулой (2).

 

№ 15. На железный стержень длиной 50 см и сечением 2 см2 намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определить энергию магнитного поля в сердечнике соленоида, если сила тока в обмотке 0,5 А.

Р е ш е н и е.

Энергия магнитного поля соленоида с индуктивностью L, по обмотке которого течет ток I, выражается формулой:

. (1)

Индуктивность соленоида зависит от числа витков на единицу длины n, от объема сердечника V и от магнитной проницаемости m сердечника, т.е. L = mm 0 n 2 V, где m 0 = магнитная постоянная.

Магнитную проницаемость можно выразить следующей формулой: где В - индукция магнитного поля, Н - напряженность.

Подставив в формулу (1) выражение индуктивности L и магнитной проницаемости, получим .

Объем сердечника выразим через длину l и сечение S

Напряженность магнитного поля найдем по формуле: Н = nI.

Подставив данные в единицах СИ, получим: Н = 2×103× 0,5 А/м = 103 А/м.

Значению напряженности намагничивающего поля в 103 А/м в железе соответствует индукция В = 1,3 Тл (см. график зависимости между Н и В в приложении).

Произведем вычисления:

№ 16. Обмотка соленоида состоит из одного слоя плотно прилегающих друг к другу витков медного провода. Диаметр провода 0,2 мм, диаметр соленоида – 5 см. По соленоиду течет ток 1 А. Определить, какое количество электричества протечет через обмотку, если концы ее замкнуть накоротко. Толщиной изоляции пренебречь.

Р е ш е н и е.

Количество электричества dq, которое протекает по проводнику за время dt при силе тока I, определяется равенством: dq = Idt. Общее количество электричества, протекшее через проводник за время t будет: q = .

Сила тока в данном случае убывает экспоненциально со временем и выражается формулой: где I 0 - сила тока до замыкания, R - сопротивление обмотки соленоида, L - индуктивность соленоида.

Внося выражение для силы тока I под знак интеграла и интегрируя от 0 до ¥ (при t ®¥, I ® 0), получим:

Подставим пределы интегрирования и определим количество электричества, протекающее через обмотку.

(1)

Найдем L и R. Индуктивность соленоида

. (2)

Сопротивление обмотки соленоида

(3)

Подставляя (2) и (3) в (1) и учитывая, что , получим:

.

 

4.2. ТРЕНИРОВОЧНЫЕ ЗАДАЧИ

 

1. Напряженность магнитного поля Н = 100 А/м. Вычислить магнитную индукцию В этого поля в вакууме. (Ответ. 126 мкТл).

2. По двум длинным проводам текут в одинаковом направлении токи I 1 = 10 A и I 2 = 15 A. Расстояние между проводами а = 10 см. Определить напряженность Н магнитного поля в точке, удаленной от первого провода на расстояние r 1 = 8 см и от второго на r 2 = 6 см. (Ответ. 44,5 А/м).

3. Решить задачу 2 при условии, что токи текут в противоположных направлениях. Точка удалена от первого провода на r 1 = 15 см и от второго на r 2 = 10 см. (Ответ. 17,4 А/м).

4. По тонкому проводнику, изогнутому в виде правильного шестиугольника со стороной а = 10 см, идет ток силой I = 20 А. Определить магнитную индукцию в центре шестиугольника. (Ответ. 138 мкТл).

5. Обмотка соленоида содержит два слоя плотно прилегающих друг к другу витков диаметром d = 0,2 мм. Определить магнитную индукцию В на оси соленоида, если по проводнику идет ток силой I = 0,5 А. (Ответ. 6,28 мТл).

6. В однородном магнитном поле с индукцией В = 0,01 Тл помещен прямой проводник длиной l = 20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток силой I = 5 А, а угол j между направлением тока и вектором магнитной индукции равен 30 0. (Ответ. 50 мН).

7. Рамка с током силой I = 5 А содержит N = 20 витков тонкого провода. Определить магнитный момент р m рамки с током, если ее площадь S = 10 см2. (Ответ. 0,1 Ам2).

8. По витку радиусом R = 10 см течет ток I = 50 А. Виток помещен в однородное магнитное поле с индукцией В = 0,2 Тл. Определить момент силы М, действующей на виток, если плоскость витка составляет угол j = 600 с линиями индукции. (Ответ. 0,157 Н м).

9. Протон влетел в магнитное поле перпендикулярно линиям индукции и описал дугу радиусом R = 10 см. Определить скорость v протона, если магнитная индукция В = 1 Тл. (Ответ. 9,57×106 м/с).

10. Определить частоту n обращения электрона по круговой орбите в магнитном поле с индукцией В = 1 Тл. (Ответ. 2,8×1010с-1).

11. Электрон в однородном магнитном поле движется по винтовой линии радиусом R = 5 см и шагом h = 20 см. Определить скорость v электрона, если магнитная индукция В = 0,1 мТл. (Ответ. 1,04×106 м/с).

12. Кольцо радиусом R = 10 см находится в однородном магнитном поле с индукцией В = 0,138 Тл. Плоскость кольца составляет угол j= 300 с линиями индукции. Вычислить магнитный поток Ф, пронизывающий кольцо. (Ответ. 5 мВб).

13. По проводнику, согнутому в виде квадрата со стороной а = 10 см, течет ток силой I =20 А. Плоскость квадрата перпендикулярна силовым линиям магнитного поля. Определить работу А, которую необходимо совершить для того, чтобы удалить проводник за пределы поля. Магнитная индукция В = 0,1 Тл. Поле считать однородным. (Ответ. 0,02 Дж).

14. Проводник длиной l = 1 м движется со скоростью v = 5 м/с перпендикулярно линиям индукции магнитного поля. Определить магнитную индукцию В, если на концах проводника возникает разность потенциалов U = 0,02 В. (Ответ. 4 мТл).

15. Рамка площадью S = 50 см2, содержащая N = 100 витков, равномерно вращается в однородном магнитном поле (В = 40 мТл). Определить максимальную э.д.с. индукции emax, если ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции, а рамка вращается с частотой n = 96 об/мин. (Ответ. 2,01 В).

16. Кольцо из проволоки сопротивлением R = 1 мОм находится в однородном магнитном поле (В = 0,4 Тл). Плоскость кольца составляет угол j = 900 с линиями индукции. Определить заряд q, который протечет по кольцу, если его выдернуть из поля. Площадь кольца S = 10 см2. (Ответ. 0,4 Кл).

17. Соленоид содержит N = 4000 витков провода, по которому течет ток силой I = 20 А. Определить магнитный поток Ф и потокосцепление y, если индуктивность L = 0,4 Гн. (Ответ. 2 мВб. 8 Вб).

18. На картонный каркас длиной l = 50 см и площадью сечения S = 4 см2 намотан в один слой провод диаметром d = 0,2 мм так, что витки плотно прилегают друг к другу (толщиной изоляции пренебречь). Определить индуктивность L получившегося соленоида. (Ответ. 6,28 мГн).

19. Определить силу тока в цепи через время t = 0,01 с после ее размыкания. Сопротивление цепи r = 20 Ом и индуктивность L = 0,1 Гн. Сила тока до размыкания цепи I 0 = 50 А. (Ответ. 6,75 А).

20. По обмотке соленоида индуктивностью L = 0,2 Гн течет ток силой I = 10 А. Определить энергию W магнитного поля соленоида. (Ответ. 10 Дж).

 

4.3. ПРОВЕРОЧНЫЙ ТЕСТ

 

1. Указать все случаи, когда напряженность магнитного поля в точке А направлена за плоскость рисунка (I 1 = I 2).

1. 2. 3. 4.

 

2. Поле создано двумя длинными параллельными проводами с то­ками I 1 = I 2 = I. Через точку А пролетает электрон. Как направлена сила, действующая на электрон?

Варианты ответа:

 

1) влево, 2) вправо, 3) к нам, 4) от нас

 

3. По контуру АВСА идет ток I = 12 А. Определить магнитную индукцию в точке А, если радиус дуги АВ = АС = 10 см, а угол a = 600.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 3186; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.