Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биномиальный закон распределения




Дискретной случайной величиной называется такая переменная величина, которая может принимать конечную или бесконечную совокупность значений, причем принятие ею каждого из значений есть случайное событие с определенной вероятностью.

Соотношение, устанавливающее связь между отдельными возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения дискретной случайной величины. Если обозначить возможные числовые значения случайной величины Х через , ,... ..., а через вероятность появления значения , то дискретная случайная величина полностью определяется следующей таблицей

...
...

 

где значения , ,... записываются, как правило, в порядке возрастания. Таблица называется законом или рядом распределения дискретной случайной величины Х. Поскольку в верхней строчке ряда распределения записаны все значения случайной величины Х, то нижняя строчка обладает тем свойством, что

Графическое изображение ряда распределения называется многоугольником распределения (полигоном распределения) (рис. 4.1):

 

 
 


Для этого по оси абсцисс откладывают значения случайной величины, по оси ординат - вероятности значений. Полученные точки соединяют отрезками прямой. Построенная фигура и называется многоугольником распределения вероятностей.

Дискретная случайная величина может быть задана функцией распределения.

Функцией распределения случайной величины Х называется функция F (x), выражающая вероятность того, что Х примет значение, меньшее чем х:

- здесь для каждого значения х суммируются вероятности тех значений , которые лежат левее точки х.

Функция F (x) есть неубывающая функция;

Для дискретных случайных величин функция распределения F(x) есть разрывная ступенчатая функция, непрерывная слева

Вероятность попадания случайной величины Х в промежуток от до (включая ) выражается формулой:

Случайная величина Х называется непрерывной, если ее функция распределения непрерывна и имеет производную.

Как уже было показано (формула 4.2), функцией распределения случайной величины Х называется функция F(x), выражающая вероятность выполнения условия :

Функция распределения обладает следующими свойствами:

1.Вероятность попадания случайной величины в промежуток от до равна приращению функции распределения на концах этого промежутка:

так как вероятность любого отдельного значения случайной величины равна нулю, если функция распределения непрерывна при этом значении, т. Е.:

, когда F(x) - непрерывна в точке =

2.Функция распределения удовлетворяет условиям:

Плотностью распределения (дифференциальной функцией) непрерывной случайной величины называется функция

f(x) = (x).

Плотность распределения любой случайной величины неотрицательна:

Несобственный интеграл от дифференциальной функции в пределах от - до + равен 1:

График функции y = f(x) называется кривой распределения или графиком плотности распределения. Кривая y = f (x) располагается над осью абсцисс.

Вероятность попадания случайной величины в промежуток от до может быть вычислена по формуле:

Подинтегральное выражение f(x)dx называется элементом вероятности. Оно выражает вероятность попадания случайной точки в промежуток между точками х и , где бесконечно малая величина.

Функция распределения F(x) выражается через плотность f(x) формулой:

Математическое ожидание непрерывной случайной величины Х вычисляется по формуле:

дисперсия

Математическим ожиданием дискретной случайной величины называется:

В случае бесконечного множества значений в правой части находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится.

М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами:

1) М(С)=С, где С=const

2) M (CX)=CM (X)

3) M (X+Y)=M(X)+M(Y), для любых Х и Y.

4) M (XY)=M (X)M(Y), если Х и Y независимы.

Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)= а вводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения . Дисперсией называется математическое ожидание квадрата разности (X- ), т.е.

где = М(X); определяется как квадратный корень из дисперсии, т.е. .

Для вычисления дисперсии пользуются формулой:

Свойства дисперсии и среднего квадратического отклонения:

1) D(C)=0, где С=сonst

2) D(CX)=C2D(X), (CX)= çCç (X)

3) D(X+Y) =D(X)+D(Y), если Х и У независимы.

Размерность величин и совпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х.

Пусть случайная величина Х принимает значения с вероятностями а случайная величина Y- значения с вероятностями Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид

 

...
...

 

Квадрат случайной величины Х, т.е. , - это новая случайная величина,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений.

Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида с вероятностями , выражающими вероятность того, что случайная величина Х примет значение а У - значение , то есть

Если случайные величины Х и У независимы, то:

Аналогично определяются разность и произведение случайных величин Х и У.

Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида , а произведение - все значения вида с вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9).

Тема 5. «Законы распределения СВ»

Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода, называемые успех и неуспех.

Эти два исхода - взаимно несовместные и противоположные события.

2. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.

3. Все n испытаний - независимы. Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.

Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна , событие наступит ровно m раз (в любой последовательности), равна

где q=1-р.

Вероятности того, что событие наступит:

а) менее m раз,

б) более m раз,

в) не менее m раз,

г) не более m раз - находятся соответственно по формулам:

Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли.

 

Число успехов Х=m         ...   m   ...   n
Вероятность         ...     ...  

 

Так как правая часть формулы представляет общий член биноминального разложения , то этот закон распределения называют биномиальным. Для случайной величины Х, распределенной по биноминальному закону, имеем:

M(X)=nр

D(X)=nрq

Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то пользуются приближенной формулой:

(*)

где m - число появлений события в n независимых испытаниях, (среднее число появлений события в n испытаниях).

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 1336; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.086 сек.