КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 7. «Выборочный метод и его значение в экономическом анализе»
. . Для интервального вариационного ряда - это сумма частот (частостей) всех интервалов, не превышающих данный. Дискретный вариационный ряд графически можно представить с помощью полигона распределения частот или частостей. При построении полигона распределения по оси абсцисс откладываются значения признака (варианты), а по оси ординат - частоты или частости. На пересечении значений признака и соответствующих им частот (частостей) откладываются точки, которые, в свою очередь, соединяются отрезками. Получающаяся таким образом ломаная называется полигоном распределения частот (частостей).
Интервальные вариационные ряды графически можно представить с помощью гистограммы, т.е. столбчатой диаграммы. При построении гистограммы по оси абсцисс откладываются значения изучаемого признака (границы интервалов). В том случае, если интервалы - одинаковой величины, по оси ординат можно откладывать частоты или частости. Если же интервалы имеют разную величину, по оси ординат необходимо откладывать значения абсолютной или относительной плотности распределения. Абсолютная плотность - отношение частоты интервала к величине интервала: ; где: f(a)i - абсолютная плотность i-го интервала; mi - частота i-го интервала; ki - величина i-го интервала (интервальная разность). Абсолютная плотность показывает, сколько единиц совокупности приходится на единицу интервала. Относительная плотность - отношение частости интервала к величине интервала: ; где: f(о)i - относительная плотность i-го интервала; wi - частость i-го интервала. Относительная плотность показывает, какая часть единиц совокупности приходится на единицу интервала.
И дискретные и интервальные вариационные ряды графически можно представить в виде кумуляты и огивы. При построении кумуляты по данным дискретного ряда по оси абсцисс откладываются значения признака (варианты), а по оси ординат - накопленные частоты или частости. На пересечении значений признака (вариантов) и соответствующих им накопленных частот (частостей) строятся точки, которые, в свою очередь, соединяются отрезками или кривой. Получающаяся таким образом ломаная (кривая) называется кумулятой (кумулятивной кривой). При построении кумуляты по данным интервального ряда по оси абсцисс откладываются границы интервалов. Абсциссами точек являются верхние границы интервалов. Ординаты образуют накопленные частоты (частости) соответствующих интервалов. Часто добавляют еще одну точку, абсциссой которой является нижняя граница первого интервала, а ордината равна нулю. Соединяя точки отрезками или кривой, получим кумуляту. Огива строится аналогично кумуляте с той лишь разницей, что на оси абсцисс наносятся точки, соответствующие накопленным частотам (частостям), а по оси ординат - значения признака (варианты). Одной из основных числовых характеристик ряда распределения (вариационного ряда) является средняя арифметическая. Существует две формулы расчета средней арифметической: простая и взвешенная. Простую среднюю арифметическую обычно используют, когда данные наблюдения не сведены в вариационный ряд либо все частоты равны единице или одинаковы. ; где xi - i-е значение признака; n - объем ряда (число наблюдений; число значений признака). В том случае, если частоты отличны друг от друга, расчет производится по формуле средней арифметической взвешенной: ; где xi - i-е значение признака; mi - частота i-го значения признака; k - число значений признака (вариантов). При расчете средней арифметической в качестве весов могут выступать и частости. Тогда формула расчета средней арифметической взвешенной примет следующий вид: где xi - i-е значение признака; wi - частость i-го значения признака; k - число значений признака (вариантов). Колеблемость изучаемого признака можно охарактеризовать с помощью различных показателей вариации. К числу основных показателей вариации относятся: дисперсия, среднее квадратическое отклонение, коэффициент вариации. Дисперсию можно рассчитать по простой и взвешенной формуле. Простая имеет вид: . А взвешенная: . Среднее квадратическое отклонение рассчитывается по формуле: Коэффициент вариации рассчитывается по формуле:
Одно из популярных определений статистики говорит, что это – наука, позволяющая распространять выводы, сделанные на основе изучения части совокупности (случайной выборки), на всю совокупность (генеральную совокупность). В этом определении заключена сущность выборочного метода и его ведущая роль в статистике. Все единицы совокупности, обладающие интересующими исследователя признаками, составляют генеральную совокупность. Часть совокупности, случайным образом отобранная из генеральной совокупности – выборочная совокупность – выборка.[1] Число единиц (элементов) статистической совокупности называется её объёмом. Объем генеральной совокупности обозначается N, а объем выборочной совокупности n. Если объем совокупности велик, то его полагают равным бесконечности. Случайная выборка из n элементов - это такой отбор, при котором элементы извлекаются по одному из всей генеральной совокупности и каждый из них имеет равный шанс быть отобранным. Требование случайности обеспечивается отбором по таблицам случайных чисел или по жребию. Такая выборка называется собственно-случайной. Одним из примеров использования собственно-случайной выборки является проведение тиражей выигрышей денежно-вещевых лотерей, при которых обеспечивается равная возможность попадания в тираж любого номера лотерейного билета. По способу отбора элементов различают два типа случайных выборок: собственно-случайная повторная выборка (схема возвращенного шара); собственно-случайнаябесповторная выборка (схема невозвращенного шара). Выбор схемы отбора зависит от характера изучаемого объекта. Напомним, что при повторном отборе единица наблюдения после извлечения из генеральной совокупности регистрируется и вновь возвращается в генеральную совокупность, откуда опять может быть извлечена случайным образом. При бесповторном отборе отобранный элемент в выборку обратно не возвращается. Необходимо заметить, что независимо от способа организации выборки она должна представлять собой уменьшенную копию генеральной совокупности, то есть быть представительной (репрезентативной). Пусть из генеральной совокупности извлекается выборка объема n, причем значение признака х1 наблюдается m1 раз, х2 m2 раз,..., хk наблюдается mk раз, - объем выборки. Мы можем сопоставить каждому значению xi относительную частоту mi/n.
Дата добавления: 2014-12-16; Просмотров: 618; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |