КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проверка статистических гипотез
Статистическая гипотеза — это предположение о виде закона распределения («данная генеральная совокупность нормально распределена»); о значениях его параметров («генеральное среднее равно нулю»); об однородности данных («эти две выборки извлечены из одной генеральной совокупности»). Статистическая проверка гипотезы состоит в выяснении того, согласуются ли результаты наблюдений (выборочные данные) с нашим предположением. Результатом проверки может быть отрицательный ответ: выборочные данные противоречат высказанной гипотезе, поэтому от нее следует отказаться. В случае ответа неотрицательного (выборочные данные не противоречат гипотезе) гипотезу принимают в качестве одного из допустимых решений (не единственно верного). Различают основную (нулевую) гипотезу (гипотеза, которая проверяется, Цель статистической проверки гипотез: на основании выборочных данных принять решение о справедливости основной гипотезы или отклонить в ее пользу альтернативной. Так как проверка осуществляется на основании выборки, а не всей генеральной совокупности, то существует вероятность, возможно, очень малая, ошибочного заключения. Так, нулевая гипотеза может быть отвергнута, в то время как в действительности в генеральной совокупности она является справедливой. Такую ошибку называют ошибкой первого рода, а её вероятность — уровнем значимости и обозначают a (стандартные значения a: 0.1, 0.05, 0.01, 0.001). Возможно, что нулевая гипотеза принимается, в то время как в генеральной совокупности справедлива альтернативная гипотеза. Такую ошибку называют ошибкой второго рода, а её вероятность обозначают Замечание. Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Например, основная гипотеза состоит в том, что предприятие получает прибыль. Если это правильная гипотеза, то ошибка первого рода состоит в том, что данная гипотеза отвергается. Если принимается решение о том, что прибыль предприятие не получает, то это ошибка второго рода. Иногда ошибку первого рода называют «альфа-риск» (a-риск) а ошибку второго рода «бета-риск» (b-риск). Из двух критериев, характеризующихся одной и той же вероятностью Значения критерия K разделяются на две части: область допустимых значений (область принятия гипотезы Пример 4.7. Для подготовки к зачету преподаватель сформулировал 100 вопросов (генеральная совокупность) и считает, что студенту можно поставить «зачтено», если тот знает 60 % вопросов (критерий). Преподаватель задает студенту 5 вопросов (выборка из генеральной совокупности) и ставит «зачтено», если правильных ответов не меньше трех. Гипотеза Студент А выучил 70 вопросов из 100, но ответил правильно только на два из пяти, предложенных преподавателем, — зачет не сдан. В этом случае преподаватель совершает ошибку первого рода. Студент Б выучил 50 вопросов из 100, но ему повезло, и он ответил правильно на 3 вопроса — зачет сдан, но совершена ошибка второго рода. Преподаватель может уменьшить вероятность этих ошибок, увеличив количество задаваемых на зачете вопросов. Алгоритм проверки статистических гипотез сводится к следующему: 1) сформулировать основную 2) выбрать уровень значимости 3) в соответствии с видом гипотезы 4) по таблицам распределения случайной величины K найти границу критической области 5) по выборочным данным вычислить наблюдаемое значение критерия 6) принять статистическое решение: если
4.3.1 П роверка гипотез о виде распределения. критерий согласия Пирсона Одной из важных задач математической статистики является установление теоретического закона распределения случайной величины, характеризующей изучаемый признак по эмпирическому распределению, представляющему вариационный ряд. Предположение о виде закона распределения можно сделать по гистограмме или полигону (Рис. 4.3)
Рис. 4.3. Возможные виды гистограмм:
Например, по гистограмме (рис. 4.3, а)) можно сделать предположение о том, что генеральная совокупность распределена по нормальному закону. Для проверки гипотез о виде распределения служат специальные критерии — критерии согласия. Они отвечают на вопрос: согласуются ли результаты экспериментов с предположением о том, что генеральная совокупность имеет заданное распределение. Проверим это предположение с помощью критерия согласия Пирсона. В этом критерии мерой расхождения между гипотетическим (предполагаемым) и эмпирическим распределением служит статистика
где n — объем выборки; k — количество интервалов (групп наблюдений);
Если предположение о виде закона распределения справедливо, то статистика Пирсона распределена по закону «хи-квадрат» с числом степеней свободы Оцениваются неизвестные параметры с использованием теории точечных оценок (см. источник [3], гл.16 и раздел 3.8. настоящего пособия), некоторые оценки приведены в табл. 4.4.
Таблица 4.4. Оцениваемые параметры и их точечные оценки
Здесь Количество интервалов k рекомендуется рассчитывать по формуле Старджеса Пример 4.8. Длясреднего балла среди 30-ти групп (с точностью до сотых долей балла) получили выборку 3.7, 3.85, 3.7, 3.78, 3.6, 4.45, 4.2, 3.87, 3.33, 3.76, 3.75, 4.03, 3.8, 4.75, 3.25, 4.1, 3.55, 3.35, 3.38, 3.05, 3.56, 4.05, 3.24, 4.08, 3.58, 3.98, 3.4, 3.8, 3.06, 4.38. Проверить гипотезу о нормальном распределении среднего балла на уровне значимости Решение. Сгруппируем эту выборку. Наименьший средний балл равен 3.05, наибольший — 4.75. Интервал [3; 4.8] разобьем на 6 частей длиной Таблица 4.5. Статистический ряд
Сформулируем основную и альтернативную гипотезы.
Рассчитаем наблюдаемое значение
и таблицу функции Лапласа (приложение 1). Полученные результаты сведем в таблицу (табл. 4.6). Наблюдаемое значение статистики Пирсона равно Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Наблюдаемое значение статистики Пирсона не попадает в критическую область: Вывод: на уровне значимости 0.025 справедливо предположение о том, что средний балл имеет нормальное распределение.
Таблица 4.6. Сравнение наблюдаемых и ожидаемых частот
Дата добавления: 2014-12-16; Просмотров: 1375; Нарушение авторских прав?; Мы поможем в написании вашей работы! |