Боковая и полная поверхности, а также объем можно находить по тем же формулам, что и в случае прямой призмы. Если известна площадь сечения призмы, перпендикулярного ее боковому ребру, то объем V=Sсеч.∙ l, где l- боковое ребро, Sсеч.-площадь сечения, перпендикулярного боковому ребру l.
1) боковая поверхность Sбок. равна сумме площадей боковых граней пирамиды;
2) полная поверхность Sполн.=Sосн.+Sбок.;
3) объем V=(1/3) Sосн.∙Н.
4) У правильной пирамиды в основании лежит правильный многоугольник, а вершина пирамиды проектируется в центр этого многоугольника, т. е. в центр описанной и вписанной окружностей.
5) Апофема l –это высота боковой грани правильной пирамиды. Боковая поверхность правильной пирамиды Sбок.=(½) Pосн.∙ l.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление