КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнения кинематики манипулятора
Лекция 6
Рисунок 6.1. Система координат схватa Однородная матрица 0 T i = 0A i 1A i …i-1A i = где р i - вектор, соединяющий начало базовой системы координат с началом i -й системы координат. Это верхняя правая подматрица матрицы Положим, что матрица Т имеет следующий вид: T = где n – вектор нормали к схвату. В случае плоскопараллельного движения пальцев этот вектор перпендикулярен пальцам манипулятора; s – касательный вектор схвата. Он лежит в плоскости движения пальцев и указывает направление движения пальцев во время открытия или закрытия схвата; a - вектор подхода схвата. Он направлен по нормали к ладони схвата, (т.е. перпендикулярно плоскости крепления инструмента в схвате); p - вектор положения схвата. Этот вектор направлен из начала базовой системы координат к началу системы координат схвата, которое, как правило, расположено в точке, являющейся геометрическим центром полностью сжатых пальцев. Если положение манипулятора в абсолютном пространстве определяется матрицей B, а в схвате манипулятора зафиксирован инструмент, положение которого в системе координат схвата определяется матрицей H, то положение рабочего узла инструмента относительно абсолютной системы координат дается произведением матриц В, 0 Т 0 и Н, т.е.:
При этом H ≡ Решение прямой задачи кинематики для шестизвенного манипулятора является вычислением T =0 A 6 с помощью последовательного перемножения шести матриц i -1 A i . Решение этой задачи приводит к единственной матрице Т при заданных Матрица T манипулятора Пума имеет вид: T = 0 A 11 A 22 A 33 A 44 A 55 A 6= где
Например, при T = что согласуется с выбором системы координат на рис. 5.4. Из равенств (6-3) – (6-6) видно, что вычисление матрицы манипулятора Т требует обращения к программам вычисления 12 трансцендентных функций, выполнения 40 умножений и 20 сложений в том случае, если производится только вычисление правой подматрицы Т, имеющей размерность 3×3, а вектор n определяется как векторное произведение векторов s и a(n=s×a). Еслиобъединить d6 с длиной рабочего инструмента, то d 6=0, а длина инструмента увеличивается на d6 единиц. Это сокращает объем вычислений до 12 бращений и программ вычисления трансцендентных функций, 35 операций умножения и 16 операций сложения. Классификация манипуляторов
Манипулятор состоит из последовательности твердых тел (или звеньев), первое из которых соединено с опорной стойкой, а последнее снабжено рабочим инструментом. Каждое звено соединено не более чем с двумя другими так, чтобы не образовывалось замкнутых цепей. Соединение двух звеньев – сочленение – имеет только одну степень свободы. С учетом этого ограничения интерес представляет два типа сочленений: вращательное и поступательное. Вращательное сочленение допускает только вращение вокруг некоторой оси; поступательное сочленение обеспечивает поступательное движение вдоль некоторой оси при отсутствии вращения (поступательное движение с вращением имеет место в винтовых сочленениях). Звенья манипулятора участвуют в относительном движении, в результате которого достигается определенное положение и ориентация схвата или инструмента. Следовательно, рассматривая манипуляторы как некоторые последовательности сочленений и звеньев, их можно классифицировать по типу используемых сочленений и последовательности их расположения в направлении от опорной стойки к схвату. При таком подходе манипулятор Пума следует отнести к классу 6В, а манипулятор «Электроника» - к классу 2П-В-П-В. Здесь «В» обозначает вращательное, а «П» – поступательное сочленение.
Обратная задача кинематики В этом разделе рассматривается обратная задача кинематики шестизвенного манипулятора. Необходимо по заданной матрице 0 T 6 положения и ориентации схвата шестизвенного манипулятора и известным параметрам его звеньев и сочленений определить присоединенные параметры Для того, чтобы решение обратной задачи кинематики было получено в явном виде, необходимо, чтобы конструкция робота удовлетворяла одному из двух условий: 1. Оси трех смежных сочленений пересекаются в одной точке. 2. Оси трех смежных сочленений параллельны между собой. Из равенства (4-2) следует вид матрицы манипулятора T: T 6= Из равенства (4-7) видно, что матрица T является функцией синусов и косинусов углов
Дата добавления: 2014-12-17; Просмотров: 1736; Нарушение авторских прав?; Мы поможем в написании вашей работы! |