Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механизм генерации потенциала действия кардиомиоцита




Потенциал действия мышечной клетки сердца отличается от потенциала действия нервного волокна и клетки скелетной мышцы прежде всего длительностью возбуждения - деполяризации (рис).

 

 

 

Рис.. Потенциал действия кардиомиоцита

Если длительность ПД аксона составляет 1 мс, клетки скелетной мышцы 2 - 3 мс, то длительность потенциала действия клетки сократительного миокрада желудочка и сердца составляет 250 - 300 мс. Это позволяет осуществить синхронное возбуждение и сокращение структур сердца для обеспечения выброса крови.

Такие особенности ПД кардиомиоцита обеспечиваются распределением ионов внутри и снаружи клетки (рис.).

 

 

Рис.. Распределение концентрации ионов внутри и снаружи

кардиомиоцита позвоночных (ммоль/л).

Показаны К+- Na+- и Са2+- насосы, поддерживающие концентрации

ионов на указанных уровнях; горизонтальными стрелками указаны

направления пассивных потоков ионов при открытом состоянии

соответствующих каналов, вертикальными - направление

активного переноса ионов

Распределение ионов К+ и Na+ в кардиомиоцитах близко к распределению этих ионов в скелетной мышце. Однако в кардиомиоците при формировании ПД и в процессе сокращения существенную роль играют и ионы Са2+. Их концентрация снаружи клетки составляет около 2 ммоль/л, но внутри клетки концентрация свободных ионов Са2+ очень мала: 10-4 ммоль/л. При сокращении концентрация свободных ионов Са2+ внутри клетки может возрастать до 10-8 ммоль/л, но в фазе реполяризации избыток этих ионов удаляется из клетки.

Ионные насосы миокардиальных клеток. Сохранение ионного балланса в кардиомиоцитах обеспечивают К+- Na+- и Са2+-насосы, активно перекачивающие ионы Na+ и Са2+ наружу, а ионы К+ - внутрь клетки. Работу этих насосов обеспечивают ферменты К+- Na+- АТФаза и Са2+-АТФаза, находящиеся в сарколемме миокардиальных клеток.

Плотность молекул К+- Na+-нacoca в мембране, оцениваемая по специфическому связыванию [3Н] - оуабаина, составляет около 1000 на 1 мкм2, то есть 1011 насосов на см2. Число циклов насоса оценивается ≈ 20 в секунду. Тогда на 1 см2 за одну секунду происходят 2 • 1012 циклов насосов. Так как за каждый цикл насос переносит 3 иона Na+, то всего переносится 6 • 1012 ионов за 1 с на 1 см2. Разделив этот результат на число Авогадро (6,02 • 1023 моль-1), получаем 10 • 10 12 моль/см2 • с, то есть по расчету через 1 см2 за 1 с насос перекачивает 10 пмоль ионов Na.

В покое проницаемость мембраны для ионов Na+ и Са2+ весьма мала: PNa/ Рк = 0,05; отношение РСа/ Рк также мало, мала и концентрация ионов Са2+ вне клетки. Поэтому потенциал покоя, как и в нервных волокнах, определяется в основном разностью концентраций ионов К+ по обе стороны клеточной мембраны.

Потенциал действия клетки миокарда имеет три характерные фазы: деполяризация (I), плато (II) и реполяризация (III).

I фаза — деполяризация, как и в аксоне, определяется резким ростом проницаемости мембраны для ионов натрия: Рк :PNa = 1: 20 в момент превышения φм порогового значения при возбуждении. Порог активации натриевых каналов примерно -60 мВ, а время жизни 1 - 2 мс и может доходить до 6 мс.

II фаза - плато - характерна медленным спадом φм от пикового значения (= + 30 мВ) до нуля. В этой фазе одновременно работают два типа каналов - медленные кальциевые каналы и калиевые каналы.

Кальциевые каналы имеют порог активации около -30 мВ, а время их жизни примерно 200 мс. В результате открывания кальциевых каналов возникает деполяризующий медленный входящий в клетку кальциевый ток:

ICa=gCaM – φCa),

где gCa - проводимость мембраны для ионов Са2+.

Этот ток обеспечивается пассивным переносом в соответствии с градиентом электрохимического потенциала для ионов Са2+ (рис.).

Равновесный кальциевый потенциал по уравнению Нернста:

Одновременно с ростом кальциевого тока растет проводимость для ионов калия gK, что приводит к возникновению вытекающего калиевого тока, ре поляризующего мембрану.

Во II фазе gca уменьшается, a gK увеличивается (см. рис. 4.9), происходит постепенное выравнивание текущих навстречу друг другу токов, а потенциал мембраны φм понижается почти до нуля. Для II фазы характерно, что суммарный ток мембраны I стремится к 0.

 

 

 

 

Рис.. Изменение проводимостей для ионов Na+, Ca2+, К+ при возбуждении каридомиоцита

III фаза реполяризация - характеризуется закрытием кальциевых каналов, ростом величины gK и усилением выходящего тока К+.

Для кальциевого канала, так же как и для натриевого, предполагается существование активирующих и инактивирующих частиц, состояние которых описывается не­которыми параметрами d и f соответственно. Тогда проводимость канала gCa в уравнении:

gCa= gCa∙d∙f,

где gCa — максимальная проводимость открытого кальциевого канала.

Процессы возбуждения кардиомиоцита изучаются с помощью ряда специальных методов.Один из них - это метод блокаторов (антагонистов) ионов кальция. Были найдены специфические блокаторы кальциевого тока в миоците: препараты Д-600, верапамил, катионы металлов La3+, Mn2+ и некоторые другие. Эти вещества прекращают доступ кальция внутрь клетки и тем самым изменяют величину, и форму потенциала действия. Интересно отметить, что кальциевые каналы не блокируются тетродотоксином (блокатором ионов Na+), что дает основание допускать существование в кардиомиоцитах отдельных кальциевых каналов.

Второй метод - люминесцентный анализ. Он позволяет регистрировать в эксперименте перенос ионов кальция с помощью, белка экворина, получаемого из светящихся медуз. Особенность этого белка заключается в том, что, обладая высоким сродством к ионам Са2+, он люминесцирует в их присутствии. Экворин S вводится в препарат сердечной мышцы, и с помощью специальной оптической аппаратуры регистрируется изменение интенсивности свечения во времени. Полученные результаты пoзволяют описать процессы переноса ионов кальция при генерации потенциала действия в мышце сердца.

Распределение ионов кальция по сердечной мышце в норме и патологии изучается с помощью метода радионуклидной диагностики. Для этого используют радиоактивный изотоп кальция – Ca2+, β - излучение которого регистрируется сканерами.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 2205; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.