Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электромагнитные излучения сосредоточенных источников




Низкочастотные и высокочастотные излучения технических средств

Большую угрозу безопасности информации создают также побочные излучения радио и электротехническими средствами электромагнитных полей, содержащих защищаемую информацию. Источниками излучений могут быть цепи, содержащие статические или динамические заряды (электрический ток), в информационные параметры которых тем или иным способом записывается защищаемая информация. Носители защищаемой информации в виде статических или динамических зарядов могут попадать в эти цепи непосредственно, если эти цепи участвуют в обработке, передаче и хранении защищаемой информации или сами элементы цепей обладают свойствами акустоэлектрических преобразователей, или опосредованно, когда опасные сигналы проникают в излучающие цепи через паразитные связи.

Вид излучения и характер распространения электромагнитного поля в пространстве зависит от частоты колебаний поля и вида излучателя. Различают низкочастотное и высокочастотные опасные излучения.

Под низкочастотными излучениями понимаются излучения электромагнитных полей, частоты которых соответствуют звуковому диапазону. Источниками таких излучений являются устройства и цепи звукоусилительной аппаратуры (микрофоны, усилители мощности, аудиомагнитофоны, громкоговорители и их согласующие трансформаторы, кабели между микрофонами и усилителями, усилителями и громкоговорителями, цепи, содержащие случайные акустоэлектрические преобразователи, телефонные аппараты и кабели внутренней АТС и др.).

Наибольшую угрозу создают средства звукофикации помещений для озвучивания акустической информации, содержащей защищаемые сведения. Эти средства включают микрофоны, усилители мощности, громкоговорители, устанавливаемые на стенах больших помещений (залов для совещаний, конференцзалов) или в спинки кресел, а также соединительные кабели. Причем часто усилители мощности размещаются в техническом помещении, удаленном на значительном расстоянии от конференцзала. По проводам кабелей звукоусилительной аппаратуры протекают большие токи, составляющие доли и единицы ампер. Эти токи создают мощные магнитные поля, которые, вопервых, могут распространяться за пределы выделенного помещения, здания и даже организации, а вовторых, наводить ЭДС в любых токопроводящих конструкциях, в том числе в цепях электропитания и металлической арматуре зданий.

К высокочастотным опасным излучениям относятся электромагнитные поля, излучаемые цепями радиоэлектронных средств, по которым распространяются высокочастотные (выше звукового диапазона) сигналы с конфиденциальной информацией. Можно утверждать, что если не приняты специальные дополнительные меры, то источниками подобных опасных побочных ВЧ-излучений могут быть любые цепи радио и электрических средств. К основным источникам побочных излучений с мощностью, достаточной для распространения электромагнитного поля за пределы контролируемой зоны, например помещения, относятся:

· гетеродины радио и телевизионных приемников;

· генераторы подмагничивания и стирания аудио и видеомагнитофонов;

· усилители и логические элементы в режиме паразитной генерации;

· электроннолучевые трубки средств отображения защищаемой информации (мониторов, телевизоров);

· ВЧ-навязывания;

· мониторы, клавиатура, принтеры и другие устройства компьютеров, в которых циркулируют сигналы в параллельном коде.

Гетеродины радио и телевизионных приемников являются генераторами гармонических колебаний, необходимыми для преобразования частоты принимаемого сигнала в промежуточную частоту. Гармоническое колебание с гетеродина подается на смеситель, на нелинейном элементе (диоде или транзисторе) которого осуществляется преобразование входного (принимаемого) сигнала в сигнал промежуточной частоты. Частоты сигналов гетеродинов отличаются на величину промежуточной частоты (465 кГц — для ДВ, СВ и КВдиапазонов, 10 МГц— для УКВдиапазонов) от принимаемых сигналов и могут иметь значения от сотен кГц до десятков ГГц. Если элементы контура (индуктивность и емкость) гетеродина обладают свойствами акустоэлектрических преобразователей или в него проникают опасные сигналы от других акустоэлектрических преобразователей, то возможна амплитудная или частотная модуляция сигналов гетеродина. Мощность излучения модулированных сигналов гетеродина тем больше, чем ближе значения длины волны гармонического колебания к длине цепей, по которым протекают сигналы гетеродинов. Часто она бывает достаточной для подслушивания речевой информации в кабинете руководителя с включенным радио или телевизионным приемником с помощью бытовых радиоприемников в соседних помещениях или даже зданиях.

Генераторы сигналов высокочастотного подмагничивания и стирания магнитофонов создают гармонические колебания на частотах в сотни кГц. Генераторы сигналов высокочастотного подмагничивания необходимы для обеспечения аналоговой аудио и видеозаписи с малыми нелинейными искажениями. Зависимость остаточной намагниченности магнитной пленки от напряженности магнитного поля в головке записи нелинейная, что вызывает нелинейные искажения в записанном сигнале. Путем подачи в магнитную головку наряду с током записи дополнительного тока подмагничивания с частотой около 100 кГц и амплитудой, в 68 раз превышающей максимальную амплитуду тока записи, устанавливается рабочая точка для тока записи на линейном участке кривой намагничивания магнитной ленты. В результате выбора оптимального тока подмагничивания удается уменьшить нелинейные искажения сигналов записи до единиц процентов.

Генератор высокочастотного стирания обеспечивает стирание записанной на магнитную ленту информации путем размагничивания ее магнитного слоя практически до нуля. Для этого в стирающую головку аудиомагнитофона подается ток с частотой 50 - 100 кГц. При такой частоте тока стирания и уменьшения напряженности магнитного поля головки в результате удаления стираемого элементарного участка движущейся магнитной ленты от зазора стирающей магнитной головки происходит многократное перемагничивание участка с убывающей до нуля намагниченностью. В отличие от высокочастотного стирания уничтожение информации путем воздействия на магнитный слой магнитным полем постоянного магнита, который применяется в качестве стирающей головки в специальных диктофонах, обеспечивается путем намагниченности магнитного слоя ленты до насыщения.

Паразитная генерация может возникнуть при определенных условиях в усилителях и логических элементах дискретной техники. Логический элемент рассматривается в данном контексте как усилитель с очень высоким коэффициентом усиления.

Опасность паразитной генерации состоит также в том, что она часто возникает на частотах выше рабочего диапазона и без специальных исследований не обнаруживается. Действительно, с ростом частоты обрабатываемых сигналов уменьшаются значения паразитных емкостных и индуктивных сопротивлений между каскадами. В результате этого увеличиваются Кос и сдвиг фазы сигналов, прошедших через паразитные связи. Поэтому возможность выполнения условий генерации в усилителе на частотах, превышающих верхнюю частоту рабочего диапазона частот усилителя, повышается. Хотя на этой частоте полезные сигналы на вход усилителя не подаются, но на его входе присутствуют сигналы, обусловленные тепловым шумом и проникшие через паразитную обратную связь. Любая шумовая реализация на входе усиливается усилителем и частично возвращается через паразитную обратную связь на его вход. При равенстве фаз величина суммарного сигнала на входе усилителя повышается, что приводит к росту сигнала на выходе усилителя. Следствием этого является увеличение сигнала Uoc и дальнейшее увеличение сигнала на входе усилителя и т. д. Происходит лавинообразный процесс нарастания амплитуды сигнала на входе и выходе усилителя, завершаемый процессом непрерывной генерации на частоте ю. Поэтому не рекомендуется, например, применять в усилителях низкой частоты высокочастотные транзисторы, которые усиливают шумы с частотами выше верхней границы рабочего диапазона частот.

Паразитная генерация усилителя или логического элемента создает угрозу информации, если она записывается в информационные параметры паразитного колебания, т. е. происходит его модуляция информационными сигналами. Это явление возникает в случае, если цепи паразитного генератора содержат акустоэлектрнческие преобразователи или в них попадают опасные сигналы от других случайных акустоэлектрических преобразователей усилителя.

Люминофор электроннолучевых трубок средств отображения под действием электронов излучает, кроме света, электромагнитнос поле в широком диапазоне радиочастот с напряженностью, которая обеспечивает возможность перехвата сигналов на удалении в Десятки метров. Учитывая, что сигналы управления электронным лучом трубки подаются последовательно во времени, их побочные ВЧ-излучения создают серьезную угрозу для отображаемой на экране трубки информации.

Устройства компьютера, в которых распространяются сигналы в последовательном коде (мониторы, клавиатура, принтеры и другие), также представляют собой источники опасных сигналов. Замена монитора компьютера на электроннолучевой трубке на жидкокристаллический монитор не устраняет проблему защиты информации, отображаемой на его экране. Хотя экран жидкокристаллического монитора не создает опасные излучения, но в устройстве управления значениями пикселей строки монитора присутствуют последовательные информационные сигналы. Спектр этих сигналов имеет широкий спектр в диапазоне сотен МГц. В результате их перехвата возможно восстановление изображения.

К излучающим элементам ВЧ-навязывания относятся радио и механические элементы, которые обеспечивают модуляцию подводимых к ним внешних электрических и радиосигналов. К таким элементам относятся:

— нелинейные элементы, на которые одновременно поступают низкочастотный электрический сигнал с защищаемой информацией

— токопроводящие механические конструкции, изменяющие свой размер и переотражающие внешнее электромагнитное поле.

Если на нелинейный элемент (диод, транзистор) подаются 2 сигнала: низкочастотный сигнал uc(t), в информационные параметры которых записана информация, и высокочастотный (сотни кГц —единицы МГц) гармонический сигнал ивч от внешнего генератора, то в токе через нелинейный элемент появятся высокочастотные составляющие, модулированные по амплитуде опасным сигналом. информацию. Этот ток создает электромагнитное поле, мощность которого зависит не только от мощности сигналов, но и от соотношения длины его волны и длины цепи, по которой протекает ток. Такой вариант реализуется путем подачи внешнего высокочастотного электрического сигнала в телефонную проводную линию. Рассмотренный вариант реализуется путем подачи внешнего электрического сигнала в телефонную проводную линию.

Другим видом излучателя ВЧ-навязывания являются механические конструкции, способные изменять свой размер под действием акустической волны и переотражать внешнее электромагнитное поле. Такие конструкции, как правило, образуют замкнутую полость с токопроводящими поверхностями, одна из которых — тонкая и способна колебаться в соответствии с акустическим сигналом мембрана. При колебании мембраны изменяются геометрические размеры полости. Полость представляет собой колебательный контур, собственная частота которого определяется ее геометрическими размерами. При облучении конструкции электромагнитным полем с частотой колебания, равной собственной частоте контура, возникают резонансные явления и переотражается максимум энергии облучаемого поля. При колебаниях мембраны изменяются частота и напряженность переотраженного поля. После приема переотраженного поля из него можно выделить путем демодуляции электрический сигнал, соответствующий акустическому. Такой излучатель ВЧ-навязывания по существу представляет собой пассивный акустоэлектрический преобразователь подводимой энергии.

Дальность распространения излучаемого ВЧэлектромагнитного поля зависит от его мощности, частоты колебания, величины затухания поля в среде и характера распространения поля.

Характер распространения электромагнитного поля в свободном пространстве описывается 4 уравнения Максвелла, приведенными им в 1873 г. в труде «Трактат об электричестве и магнетизме». Эти уравнения явились обобщением открытых ранее законов электрического и магнитного полей.

В соответствии с первым уравнением любое магнитное поле создается электрическими токами и изменением во времени электрического поля. Второе уравнение обобщает закон электромагнитной индукции, открытый Фарадеем в 1831 г., и указывает на то, что в результате изменения магнитного поля в любой среде появляется электрическое поле. Из третьего уравнения Максвелла следует, что поток вектора электрической индукции через любую замкнутую поверхность равен сумме зарядов в объеме, ограниченном этой поверхностью. Четвертое уравнение позволяет сделать вывод о том, что число силовых линий магнитного поля, входящих в среду некоторого объема, равно числу силовых линий, выходящих из этого объема. Это возможно при условии отсутствия в природе магнитных зарядов.

Из уравнений Максвелла также следует, что автономно (независимо) в природе могут существовать только постоянные электрические и магнитные поля. Поле, излучаемое зарядами и токами переменной частоты, является электромагнитным. В нем присутствуют электромагнитные и электрические компоненты, которые описываются взаимно перпендикулярными векторами. В зависимости от вида излучателя и расстояния от него до точки измерения характер изменения и соотношения между этими компонентами отличаются и изменяются. Характер распространения электромагнитного поля поддается точному математическому описанию для моделей излучателей в виде элементарных вибраторов. В качестве элементарного вибратора рассматривается модель излучателя, размеры которой существенно меньше длины волны излучаемого электромагнитного поля и расстояния от излучателя до точки измерения. Для такой модели параметры излучения во всех точках принимаются равными. Различают элементарные электрический вибратор и магнитную рамку. Электрический вибратор возбуждается источником переменной электродвижущей силы (источником зарядов), магнитная рамка — протекающим по рамке током.

В реальных условиях, с учетом переотражения электромагнитных волн от многочисленных преград (зданий, стен помещений, автомобилей и т. д.), характер распространения столь сложен, что в общем случае не поддается строгому аналитическому описанию.

В зависимости от соотношения геометрических размеров источников излучений и расстояния от них до точки измерения поля различают сосредоточенные и распределенные источники. Сосредоточенные источники имеют размеры, существенно меньшие, чем расстояние от источника до точки наблюдения. К сосредоточенным источникам относится большинство радиоэлектронных средств и их узлов, а также головки громкоговорителей. Для распределенных источников их геометрические размеры соизмеримы или больше расстояния до них. Типовые распределенные источники электромагнитного излучения — провода кабелей линий связи.

 

 

Если сосредоточенный анизотропный излучатель представить в виде точки, от которой электромагнитные волны распространяются по всем направлениям с одинаковой энергией, то фронт волны образует сферу. Но по мере увеличения расстояния от излучателя кривизна сферы уменьшается и волна приближается к плоской электромагнитной волне.

По характеру распространения электромагнитной волны от сосредоточенного источника окружающего его пространство делят на 3 зоны: ближнюю, переходную и дальнюю. Условная граница между ними размыта. Ближняя зона располагается на удалении г < Х/2п от источника. Пространство на расстояние г > Ук12п рассматривается как дальняя зона. Размытая граница между ближней и дальней зонами называется переходной зоной.

В результате анализа уравнений Максвелла в разных зонах, можно сделать следующие выводы.

1. Если в качестве источника поля используется электрический вибратор, то в ближней зоне преобладает электрическое поле, напряженность Е которого убывает с расстоянием в зависимости 1/г3. Магнитное поле электрического вибратора имеет меньшую напряженность, но убывающую медленнее — Н ~ 1/г2. При таком характере распространения электромагнитного поля электрического вибратора в переходной зоне значения напряженности электрической и магнитной составляющих сближаются, принимают одинаковые значения и убывают в дальней зоне обратно пропорционально г.

2. Если источником поля является магнитная рамка, то в ближней зоне Н» Е. В этом случае характер распространения магнитной и электрической составляющих меняется на обратный: большая по величине напряженность Н магнитного поля уменьшается в ближней зоне обратно пропорционально г3, меньшая напряженность Е электрического поля — обратно пропорциональна г2. В переходной зоне зависимость напряженности электрического и магнитного полей от г изменяется от соотношения 1/г2 до соотношения 1/г в дальней зоне.

3. Величина связи между электрическими и магнитными компонентами электрического поля и равная Z = Е/Н называется по аналогии с законом Ома волновым сопротивлением. Волновое сопротивление Zо свободного пространства (в вакууме) в дальней зоне равно 377 Ом. Так как напряженность электрического поля, излучаемого электрическим вибратором, в ближней зоне существенно выше напряженности магнитного поля, то в ней волновое сопротивление Z» Zо. Поэтому электрическое поле в ближней зоне называют также высокоимпедансным. В связи с тем что в ближней зоне напряженность магнитного поля, излучаемого магнитной рамкой, значительно больше напряженности электрического поля, в ней волновое сопротивление Z «Zо. Такое поле называют иизкоимпедансным.

В зависимости от источника излучения для ближней зоны характерно преобладание электрического (с высоким волновым сопротивлением) или магнитного (с низким волновым сопротивлением) полей. С увеличением расстояния от штыревой антенны волновое сопротивление уменьшается со скоростью приблизительно 20 дБ/декада от больших значений (сотни кОм) до малых значений и на большом расстоянии асимптотически приближается к волновому сопротивлению вакуума. Волновое сопротивление рамочной антенны, наоборот, сначала увеличивается от долей Ома со скоростью 20 дБ/декада до сотен кОм и затем также асимптотически приближается к волновому сопротивлению вакуума. В переходной зоне наблюдаются колебания волнового сопротивления. В дальней зоне независимо от вида источника присутствует электромагнитное поле, волновое сопротивление которому в вакууме составляет 377 Ом.

Следовательно, при оценке уровней радиосигналов вблизи источников излучения необходимо учитывать существенно более сложный характер распространения электромагнитной волны по сравнению с традиционно рассматриваемым в дальней зоне.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1481; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.03 сек.