КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Математическое описание продуктообмена и управления 2 страница
Если задача имеет решение, то одна из вершин многогранника принадлежит решению. Даже, если решение выглядит геометрически, как одна из граней или ребро, то все решения, принадлежащие такому множеству оптимальных решений, формально математически неразличимы по критерию оптимальности Min(Z) или Max(Y), так как значение Z либо Y в пределах таких ребра или грани — неизменны. В таком случае выбор оптимального из множества математически оптимальных решений предполагает рассмотрение каждого из решений во множестве математически оптимальных с учётом информации, которой не нашлось места в формально математической модели. Соответственно процесс поиска решения задачи линейного программирования, оптимального в смысле достижения Min или Max линейного критерия, сводится к последовательному перебору конечного числа вершин выпуклого многогранника и выбору экстремального из множества значений Z, достигаемого в них. Аналогичное утверждение доказано в линейной алгебре математически строго для n- мерного пространства. Алгоритм перебора вершин n- мерного выпуклого многогранника и выбора в них экстремального значения критерия оптимальности называется симплекс-метод. В разных модификациях он известен с 1940 г. Этот алгоритм также позволяет ответить и на вопросы о совместимости системы ограничений и о существовании решений либо же об отсутствии таковых. То есть работоспособность аппарата линейного программирования абстрактно-математически подтверждена уже более, чем 50 лет. А “слоёный пространственно ориентированный торт” нам потребовался только для наглядности, предметной образности изложения, а те, кому необходимы формально-математические доказательства изложенного и практические алгоритмы решения, могут найти их в специальной литературе. Мы записали ограничения задачи линейного программирования (ЛП) в виде: (E - A) XK = FK ³ FK min, а не как это принято при математически канонической записи задачи линейного программирования: (E - A) XK ³ FK min Дело в том, что при канонической записи задачи ограничения налагаются явно на левую часть абстрактного математического уравнения, которое по умолчанию в рассматриваемом нами случае приложения математического аппарата является уравнением межотраслевого баланса реального продуктообмена. В реальном же продуктообмене непосредственный интерес представляет выполнение FK ³ FK min, а не обусловленность вектора конечной продукции FK вектором валовых мощностей XK и матрицей A. Поскольку вектор FK является в нашем контексте идентификатором, уже несущим определенный экономический смысл, который может выпасть из восприятия читателя при записи ограничений в обычном для математического канона их виде (E - A) XK ³ FK min, то нами избрана такая форма напоминания, хотя чисто формально математически правая и левая части уравнения равноправны, а решать задачу ЛП‑П придется в канонической записи: т.е. по отношению к левой части уравнения продуктообмена. Практически в каждой книге, в которой рассматривается линейное программирование (ЛП), излагается теория двойственности. Её смысл сводится к следующему: задаче ЛП ì A x £ b математически объективно соответствует задача ЛП: ì A T y ³ c В этой паре задач любая из них может рассматриваться в качестве прямой задачи, и в таком случае вторая задача получает название двойственной. Решения прямой и двойственной задач взаимно обусловлены: т.е. по решению одной, на основании теории двойственности линейного программирования, можно судить о решении ей парной задачи. В зависимости от характера ограничений, определяющих размерность матрицы[147] A (количество в ней строк и столбцов), чисто алгоритмически одна из задач в паре может требовать существенно меньших объемов вычислений, что позволяет на основе теории двойственности в ряде случаев значительно сократить время решения задачи. По отношению к ранее выписанной задаче ЛП-П, описывающей межотраслевой баланс продуктообмена в натуральном учете, двойственная ей задача ЛП записывается так: ì (E - A T) P = rЗСТ £ r Это задача рентабельности (отсюда дополнительное мнемоническое обозначение «‑Р»). Она описывает ценовые соотношения при спектрах производства XK и FK , поскольку связана с уравнением реальных[148] и/или равновесных цен, или неких абстрактных “теневых” цен (в зависимости от интерпретации в ней переменных). В первой её строке слева от знака неравенства стоит несколько измененное уравнение равновесных цен (3): вектор долей добавленной стоимости обрел в нём мнемонический индекс «зст», указующий на взаимную обусловленность того явления, которое принято называть «закон стоимости», и входящих в компоненты вектора долей добавленной стоимости функционально обусловленных расходов отраслей. Обычно первую строку приведенной задачи ЛП математически канонически записывают так: (E - A T) P £ r В нашем случае отказ от математически канонической формы записи задачи линейного программирования обусловлен тем, что при следовании этой форме ограничения явно относятся к левой части уравнения равновесных цен, в которой отражен продуктообмен, в то время как на уровне макроэкономики интерес представляют ограничения, налагаемые на правую — чисто финансовую — часть уравнения равновесных цен, в которой натуральные показатели продуктообмена отраслей не присутствуют ни прямо, ни в их финансовом выражении. С начала 1950‑х гг. известна теорема: «Если в оптимальном решении прямой задачи неравенство № k выполняется как строгое (т.е. имеет место выполнение условия «>» или «<» вместо возможного равенства или неразрешимости задачи), то оптимальное значение соответствующей двойственной переменной равно нулю». Также с начала 1950-х гг. известны экономические интерпретации теории двойственности. Обычно в них в качестве прямой задачи рассматривается некая задача продуктообмена ЛП-П, в которой переменные интерпретируются как объемы ресурсов, вовлекаемых в производственный процесс. Тогда в качестве двойственной выступает задача рентабельности ЛП-Р, в которой переменные интерпретируются как некие цены [149] соответствующих ресурсов. Такая интерпретация: в прямой задаче переменные — объемы продукции или ресурсов в их натуральном учете; в двойственной задаче переменные — цены — стала традиционной, общеизвестной, общепринятой. Смотри, например, Ю.П.Зайченко “Исследование операций” (Киев, “Вища школа”, 1979 г.) — рядовой учебник для вузов; “Математическая экономика на персональном компьютере” под ред. М.Кубонива (пер. с японского, Москва, “Финансы и статистика”, 1991 г., японское изд. 1984 г.) — ликбез-справочник — «практическое пособие по активному изучению основ рыночной экономики», как сообщается в аннотации к изданию для русскоязычных. Приведенная теорема в такого рода интерпретациях обретает экономическое выражение: если объём некоего ресурса в оптимальном решении прямой задачи превышает ограничения, то цена ресурса в оптимальном решении двойственной задачи — ноль. Это — общеизвестное на протяжении не менее сорока лет в мировой литературе утверждение, ставшее привычным: Ю.П.Зайченко, стр. 88: «Если некоторый ресурс bi имеется в избытке и i- е ограничение выполняется как строгое неравенство, то оно становится несущественным и оптимальная цена соответствующего ресурса равна 0». М.Кубонива, стр. 244: «Кроме того, симплексный критерий из задачи (LP1‑D — обозначение в книге двойственной задачи) означает, что ресурс k, существующий в количестве, превышающем оптимально используемый объём, становится свободным ресурсом, и его цена обращается в нуль». Чтобы быть точным и не извращать по умолчанию контекст цитированных источников, следует сделать оговорку: только что приведенные экономические интерпретации относятся к иным экономическим задачам, не совпадающим с рассматриваемой нами задачей управления многоотраслевым народным хозяйством как целостностью, во-первых, в биосферно допустимом и, во-вторых, в общественно приемлемом режиме. В обоих цитированных источниках рассматриваются задачи оптимизации управления частной структурой в объемлющей её хозяйственной системе. Иными словами, в них рассматривается задача, как выйти на рынок со своей продукцией и не прогореть. Соответственно переменные прямой задачи (продуктообмена), не совпадающей с нашей, интерпретируются в них как расходуемые, ограниченные объемы ресурсов, доступных структуре в процессе производства ею продукции; а переменные двойственной задачи (рентабельности), также не совпадающей с нашей, интерпретируются как цены на употребление этих ресурсов. Тем не менее, с точки зрения бухгалтерии (по-русски: счетоводства), учитывающей расходы в процессе ведения производства, нет разницы между платой за употребление ресурсов и оплатой продукции поставщиков. Поэтому для нас важны не экономические задачи, рассмотренные в цитированных источниках с привлечением аппарата линейного программирования, а то обстоятельство, что, если в микроэкономических интерпретациях (по отношению к структурно обособленной частной фирме) переменные прямой задачи интерпретируются как объемы, то переменные двойственной задачи интерпретируются как цены. Но несмотря на давность и общеизвестность среди специалистов такого рода экономических интерпретаций линейного программирования, мировая экономическая наука более чем за сорок лет не сделала единственно возможного осмысленного вывода из теории двойственности в её приложениях к задачам управления (и организации саморегуляции) многоотраслевыми производственно-потребительскими системами, рассматриваемыми как целостность: ПРЕЙСКУРАНТ внутреннего рынка многоотраслевой производственно-потребительской системы на продукцию и услуги личного, семейного и общественного внепроизводственного потребления — ВЕКТОР ОШИБКИ УПРАВЛЕНИЯ ЕЮ, в его финансовом выражении. Это утверждение, высказанное в редакции “Мёртвой воды” 1991 г. интуитивно по здравому смыслу достаточно общей теории управления, имеет и строгое метрологическое обоснование на основе теории двойственности линейного программирования. Оно справедливо и по отношению к народному хозяйству в целом. Если пользоваться сложившейся к настоящему времени терминологией “экономической науки”, то это уровень “макроэкономики”, на котором двойственная (по отношению к задаче продуктообмена) задача линейного программирования — задача рентабельности — так и не нашла управленчески осмысленной интерпретации более чем за сорок лет: срок более чем достаточный. Задача рентабельности также может рассматриваться в качестве прямой, и в этом случае приведенная теорема выражается следующим образом: «Если технологический процесс № k оказывается строго невыгодным с точки зрения оптимальных цен, то в оптимальном решении задачи продуктообмена интенсивность использования соответствующего технологического процесса должна быть равна нулю». И этому подводится итог: «Таким образом, теорема выражает принцип рентабельности оптимально организованного производства». — Ю.П.Зайченко, стр. 88. Это — интерпретация уровня “микроэкономики”. Такая интерпретация допустима на иерархическом уровне, соответствующем в суперсистеме народного хозяйства всякой частной фирме, использующей аппарат линейного программирования для выбора ею из перечня многих технологий какого-то определённого набора, на основе которого ею планируется вести производство впредь. Она допустима[150] по отношению к любой структурно обособленной производственной системе, не обладающей качеством самодостаточности в смысле производства в ней продукции и её потребления, при решении задачи о наиболее выгодном с финансовой точки зрения участии в продуктообмене на рынке со сложившимся прейскурантом; а также для оптимизации экспортно-импортного баланса, подчиненной долговременной концепции внешней политики государства. Но попытка интерпретировать задачу «ЛП‑Р, ЛП‑П» в смысле цитированной теоремы, на уровне целостности народного хозяйства приводит к абсурдным результатам, подобным следующему выводу: если в феврале тарифы на коммунальные услуги не позволяют их окупить, а платежеспособности населения не хватает, чтобы оплатить их по тарифам, обеспечивающим рентабельность, то… — Отопление жилья нецелесообразно и его должно прекратить[151]. В более общей интерпретации такого рода получается, что незаменимая отрасль в целостности народного хозяйства, в случае её нерентабельности, должна прекратить своё существование; иными словами, в случае нерентабельности незаменимой отрасли — следует разрушить всё целостное народное хозяйство, ликвидировав эту отрасль. Поскольку в каждой отрасли народного хозяйства культура производства и технологическая база — объективная историческая данность, какой бы высокой или низкой она ни была, применение этой интерпретации на практике предопределяет уничтожение как минимум одной из незаменимых отраслей в собственном народном хозяйстве, в случае её нерентабельности, что ведёт к подчиненности общества внешним социальным системам и их концепциям управления и/или к народнохозяйственной и общественной катастрофе. Это — один из примеров, на общесуперсистемном уровне рассмотрения народного хозяйства, показывающий субъективную обусловленность понятия “рентабельность”, а также и других понятий, управленчески подчиненных этому понятию и с ним связанных. Это означает, что в такого рода задачах, нерентабельность незаменимой отрасли народного хозяйства (отсутствие самоокупаемости большинства предприятий в ней) — следствие либо превышения ею уровня демографической достаточности производства; либо в условиях демографической недостаточности производства — выражение ошибок в настройке кредитно-финансовой системы общества на саморегуляцию производства и распределение по демографически обусловленному спектру потребностей. Прежде чем говорить об интерпретации теории двойственности линейного программирования для решения задач уровня макроэкономики, необходимо определить основы взаимосвязи натурального и финансового учета продукции в межотраслевом балансе, без чего невозможен однозначный переход от одной формы баланса к другой. Как известно ещё из школьного курса физики, “Полезный эффект, получаемый от физической системы” численно = “ КПД (коэффициент полезного действия) этой системы” ´ “Количество энергии, введенной в эту систему”. Поскольку это общефизический закон, то он вполне применим и к системе общественного производства, хотя практически вся финансово-экономическая наука его либо игнорирует, либо воображает, что он никак не проявляется в системе общественного производства, по крайне мере на уровне макроэкономики. Так как полезный эффект, даваемый системой производства, в наиболее общем виде численно выражается в финансах, то по отношению к макроэкономике закон сохранения энергии обретает своё выражение в следующей формулировке: “Совокупный денежный номинал, противостоящий всей товарной массе в обществе в обороте всех специализированных рынков” = “Коэффициент энергетической обеспеченности денежной единицы (аналог КПД)” ´ “Количество энергии, потребляемой производственной системой общества, обслуживаемого данным видом денег [152] ”. Это выражение справедливо всегда, но есть особенность: ныне средства платежа — числа на счетах и купюрах, производство которых обусловлено субъективизмом чиновников государства, банкиров, фальшивомонетчиков, фальшивокупюрщиков, хакеров, вторгающихся в банковские сети; количество же энергии, вводимой в производственные процессы в общественном объединении труда, обусловлено объективно по биогенной энергии (растений, животных, людей, связанных с производством) — природными факторами, по техногенной энергии — развитой мощностью технической энергетики. Это означает, что количество средств платежа, противостоящих производимой продукции, может изменяться (как в большую, так и в меньшую сторону) гораздо быстрее, чем изменяется количество энергии, доступной для системы общественного производства; также следует помнить и об ограниченности реального КПД технологических процессов значениями, меньшими единицы. При таких обстоятельствах значительные колебания объема средств платежа в обороте общества вызывают межотраслевые диспропорции между реальными производственными мощностями и их разнородными финансовыми измерителями (мерами). Вследствие возникновения такого рода диспропорций способность кредитно-финансовой системы к поддержанию саморегуляции производства и распределения в большей или меньшей мере утрачивается — вплоть до полного распада макроэкономической системы на множество экономически нежизнеспособных «юридических лиц» и «индивидуальных частных предпринимателей». Этот вывод может быть получен бухгалтерски строго из анализа уравнений межотраслевого баланса в стоимостной форме в предположении изменения объема средств платежа от начала к концу производственного цикла[153]. Наиболее же общей мерой финансовых диспропорций в такого рода случаях является изменение финансового аналога КПД — коэффициента энергетической обеспеченности денежной единицы, который далее называется энергетическим стандартом обеспеченности средств платежа; для краткости просто энергетическим стандартом. Кроме того среди множества используемых в производстве ресурсов можно выделить весьма немногочисленную группу товаров, повышение цен на которые весьма быстро вызывает рост цен на все остальные товары. Эта немногочисленная группа товаров называется «базой прейскуранта». В принципе баз прейскуранта может быть выявлено несколько, но первичная база прейскуранта — энергетическая — в силу обусловленности объемов отраслевого выпуска количеством энергии, вводимой в систему производства. С энергетической базой в первую очередь связаны тарифы на транспортные услуги. В случае соблюдения энергетического стандарта обеспеченности средств платежа и директивном управлении немногими ценами избранной базы прейскуранта (включая и цену кредита: управленчески макроэкономически наилучшая цена кредита — 0 %, поскольку при нулевой ставке ссудного процента исключается “дрейф” баз прейскуранта), всё остальное — подавляющее большинство свободных цен — выражает рентабельную реакцию множества производителей, формирующих спектр предложения, на спектр реально сложившегося платежеспособного спроса. Это означает, что в условиях действующего прейскуранта P, государственное воздействие на составляющие вектора rЗСТ через ограничения rЗСТ £ r, налагаемые на межотраслевой финансовый обмен и функционально обусловленные расходы в отрасляхоткрывает возможность обеспечить рентабельность всех общественно необходимых отраслей и общественно необходимую направленность развития каждой из них при сохранении целостности народного хозяйства. Это означает, что не существует никаких формально-математических и экономических причин, чтобы в задачах управления народным хозяйством как целостностью (это предполагает рассмотрение взаимной обусловленности производства и потребления) искать иные интерпретации переменных (определение их смысловой нагрузки) в задаче продуктообмена и в задаче рентабельности. В задаче продуктообмена переменные — валовые объемы производства, вектор XK . В формально математически двойственной ей задаче рентабельности “переменные” — реальные цены [154] на продукцию спектра производства XK , т.е. вектор P, но реальные ограничения по существу в этой интерпретации относятся не к “переменным”, а к свободному члену уравнения равновесных цен — вектору rЗСТ . Энергетический же стандарт обеспеченности средств платежа — метрологическая основа сопоставления финансовых и натуральных показателей в системе долгосрочного планирования и настройки механизма саморегуляции производства и потребления в макроэкономической системе. Формально математически каждая из задач ЛП‑П и ЛП‑Р может рассматриваться в качестве прямой в теории двойственности линейного программирования, но пару — прямую и двойственную задачи на уровне “макроэкономики” — следует при этом рассматривать как единое целое. Интерпретации целостной парной задачи «ЛП‑Р, ЛП‑П» на общесуперсистемном уровне, подобные приведенной интерпретации задачи рентабельности, недопустимы, поскольку выражают взгляды, соответствующие иерархически низшим уровням системы управления по отношению к уровню суперсистемы (народного хозяйства) в целом. При рассмотрении же пары задач «ЛП-Р, ЛП-П» как целостности теория двойственности в её математически каноническом виде не может быть применена к выбору оптимального решения: существо задачи управления многоотраслевой производственно-потребительской системой таково, что решать придется задачу продуктообмена, но двойственная к ней математическая форма задачи рентабельности позволяет обосновать задачу продуктообмена ЛП-П, исключив из алгоритма её постановки и решения метод “экспертных” оценок. Дело в том, что интерпретация задачи ЛП‑Р: ì (E - A T) P = rЗСТ £ r “в лоб” в качестве равноправной двойственной задачи к задаче ЛП‑П, соответствующая использованию аппарата линейного программирования формально математически, на общесуперсистемном уровне иерархии управления народным хозяйством как целостностью управленчески бессмысленна. Если следовать формальной математике, то из первой строки задачи ЛП‑Р необходимо выбросить далее в тексте взятую в кавычкигруппу символов «= rЗСТ», после чегонайти вектор P, удовлетворяющий условиям задачи ЛП‑Р. Но P это — реальный прейскурант, а не какие-то ценоподобные фиктивные переменные. На стадии планирования производственного цикла прейскурант P:=PБ — текущий реальный прейскурант, избранный в качестве базового (мнемонический индекс «Б») объективная общественная данность, совокупность текущих ошибок управления (знак «:=», взятый в кавычки, — алгоритмический знак, имеющий смысл: переменной, что стоит слева от него, присвоить значение того, что стоит справа от него). Прейскурант это — контрольный параметр макроэкономической системы, по которому следует судить о качестве управления в ней. Но это не управляемый непосредственно параметр, который может быть использован в качестве средства управления ею, за исключением весьма малочисленной группы цен, входящих в избранную в качестве средства управления базу прейскуранта. То есть любое полученное решение математической канонически записанной задачи ЛП‑Р макроэкономически безжизненно, поскольку даже при директивном назначении математически вычисленных цен, не существует никаких природных и общественных причин, чтобы реальный платежеспособный спрос в условиях реального производства породил бы реальный прейскурант, повторяющий расчетный прейскурант оптимального решения задачи линейного программирования ЛП‑Р; либо, чтобы платежеспособный спрос реально распределился по специализированным рынкам в соответствии с вычисленным оптимальным прейскурантом. Это означает, что реальный характер причинно-следственно обусловленностей в общественных производственно-потребительских системах, при описании их аппаратом линейного программирования, не позволяет рассматривать задачи ЛП‑П и ЛП‑Р изолированно одна от другой в качестве равноправных, эквивалентных описаний одного и того же макроэкономического процесса; не позволяет отдать какой-то одной из них предпочтение, обусловленное матрицей ограничений задачи A, определяющей выигрыш в объеме вычислений при решении макроэкономической задачи с привлечением теории двойственности линейного программирования[155]. Задача ЛП‑Р, формально математическое решение которой макроэкономически бессмысленно, тем не менее является источником информации для постановки и решения задачи ЛП‑П, обоснованной не “экспертными” оценками, а реальными объективно наблюдаемыми и измеримыми характеристиками макроэкономической системы. Как было показано ранее, задача ЛП‑П поддается управленчески осмысленной интерпретации на уровне рассмотрения целостности многоотраслевого народного хозяйства, но нуждается при этом в обосновании значений её параметров, и в частности, в обосновании набора весовых коэффициентов r1, r2, …, rn в её критерии оптимальности. Таким образом, левая часть равенства (E - A T) P = rЗСТ в задаче ЛП‑Р, будучи объективной экономической данностью, показывает, что система ограничений математической задачи ЛП‑Р фактически относится к правой части того же равенства: rЗСТ £ r Поэтому, забыв на некоторое время о существовании левой части равенства, займемся анализом правой его части в связи с налагаемыми на неё ограничениями. Именно эта система ограничений rЗСТ £ r должна быть в согласии с задачей ЛП‑П, что предопределяет выбор компонент вектора r в аргументе критерия оптимальности задачи ЛП‑П: Z = rT XK, исходя из анализа объективно сложившихся ценовых соотношений и функционально обусловленных расходов (составляющих вектора rЗСТ ), входящих в структуру задачи ЛП‑Р. Для этого необходимо перейти от номинальных долевых в цене продукции характеристик к номинальным валовым финансовым характеристикам отраслей в ограничениях задачи ЛП‑Р, поскольку валовые финансовые характеристики являются финансовыми мерами мощности отраслей, сопоставимыми от одного производственного цикла к другому при условии соблюдения энергетического стандарта обеспеченности средств платежа. После этого ограничения задачи ЛП‑Р предстают в виде: [XKБ ii](E - A T) PБ = RЗСТ £ R (ЛП‑РВ), где: · [XKБ ii] — некий базовый спектр валового производства; в данной записи он представляет собой диагональную матрицу, на главной диагонали которой размещены соответствующие компоненты вектора валовых мощностей XKБ (мнемонические индекс «Б» обозначает «базовый», индекс «К», как отмечалось ранее, указует на натуральную форму учета продукции). · RЗСТ — спектр отраслевых номинальных валовых расходов формирования закона стоимости; RЗСТ = [XKБ ii]rЗСТ. · R — вектор ограничений сверху спектра RЗСТ в отраслях i = 1, …, n, связанный с вектором r аналогичным соотношением: · R =[XKБ ii]r. Т.е. в терминах теории управления R — спектр ограничения мощности управляющего сигнала. Задачу ЛП‑Р, после перехода в ней указанным способом к валовым финансовым характеристикам, будем обозначать ЛП‑РВ — «валовая». Теперь вернемся к задаче продуктообмена. Предположим, что задача продуктообмена ЛП-П по отношению к народному хозяйству, рассматриваемому как целостность, решается в условиях: (E - A) XK = FK ³ FK min ³ Fобщественно необходимое Предположим, что производственные мощности достаточны, вследствие чего такое решение задачи формально математически существует; а кроме того, что оно и практически осуществлено в управлении и при этом все неравенства в оптимальном решении задачи ЛП-П выполняются как строгие. Это означает, что в силу ранее приведенной теоремы все переменные P1, P2, …, Pn в оптимальном решении формально математической двойственной задачи ЛП-Р принимают нулевые значения. Поскольку мы интерпретируем переменные двойственной задачи ЛП-Р как реальные (а не некие) цены, то формальная математика в рассматриваемом предположении всего лишь совпадает с финансово-экономической управляемой реальностью: избыточность предложения производимого и естественно-природная неограниченная доступность чего-либо по отношению к реальному спектру запросов потребления общества имеет следствием падение цен до нуля на то, что раньше обладало ценой, либо сохраняется изначальное отсутствие цены в обществе на это “что-либо”; недостаточность по отношению к реальному спектру запросов потребления немедленно порождает цену, величина которой определяется распределением платежеспособности общества по специализированным рынкам как продукции и услуг, создаваемых в общественном объединении труда, так и естественно-природных ресурсов[156].
Дата добавления: 2014-11-29; Просмотров: 326; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |