КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства влажных материалов как объектов сушки
Тепловая сушка представляет собой сложный теплотехнологический процесс, приводящий не только к обезвоживанию, но и, как было сказано выше, к существенному изменению свойств и характеристик высушиваемого материала. В соответствии с задачами изучаемого курса будем в дальнейшем рассматривать только тепловой метод обезвоживания материалов– сушку. Под сушкой будем также понимать совокупность тепловых и массообменных процессов, происходящих внутри влажного материала (внутренняя задача сушки) и за пределами его поверхности (внешняя задача сушки) и обеспечивающих его обезвоживание. Знание свойств сушимого материала как объекта сушки позволяет выбрать рациональный метод и режим сушки, спроектировать рациональную сушильную установку для, его обезвоживания. Выявление общих физических закономерностей в процессах переноса теплоты и массы внутри влажных материалов, а также рассмотрение их структурно-механических характеристик позволило А. В. Лыкову [54]предложить классификацию сушимых материалов. Согласно этой классификации все влажные материалы делят на три группы: капиллярно-пористые, коллоидные и капиллярно-пористые коллоидные. Капиллярно-пористые, материалы при обезвоживании практически не изменяют свои размеры. При глубоком обезвоживании и механическом воздействии они могут быть превращены в дисперсные материалы, например обожженные керамические материалы, активированный уголь, песок и т. п. Коллоидные материалы при изменении содержания в них влаги существенно изменяют геометрические размеры, сохраняя эластичные свойства. К ним относятся, например, желатина, мучное тесто и т.д. Капиллярно-пористые коллоидные материалы имеюткапиллярно-пористую структуру, однако стенки капилляров, как правило, эластичны, способны к набуханию при увлажнении и усыханию при обезвоживаний. Материалы этой группы обладают свойствами материалов двух вышеназванных групп. Большинство влажных материалов относится к третьей группе, например торф, ткани, кожа, древесина и др. Изучение закономерностей переноса теплоты и массы при сушке типичных представителей каждой из групп позволяет качественно прогнозировать процесс сушки принадлежащих к этой группе материалов. При сушке влага из внутренних слоев влажного материала передвигается к поверхности и затем испаряется в окружающую среду. На преодоление сил сцепления молекул влаги друг с другом и со скелетом материала требуются затраты энергии. Поэтому свойства влажных материалов, а также скорость процессов переноса в них зависят от форм связи влаги с материалом. Согласно классификации П. А. Ребиндера, в основу которой положена энергия связи влаги с материалом, выделяют по порядку убывания энергии связи три формы: химическую, физико-химическую и физико-механическую. Химически связанная с материалом влага образуется в точных количественных соотношениях и включает ионную (влага в виде гидроксильных ионов) и молекулярную, (в виде кристаллогидратов) влагу. Эти связи могут быть разрушены или в результате химической реакции, или при прокаливании. Такая влага при сушке, как правило, из материалов не удаляется, поэтому в дальнейшем нами не рассматривается. Физико-химическая влага (связь в не строго определенных количественных соотношениях) представляет собой влагу в виде адсорбированного пара из окружающей среды поверхностью в порах, пустотах и капиллярах, составляющих материальный скелет вещества (адсорбционно связанная влага), и влагу, проникающую в материал за счет осмотического давления, вызывающего избирательную диффузию влаги из окружающей среды через полупроницаемую оболочку (осмотически связанная влага). Адсорбционно связанную влагу по значению энергии связи делят на влагу моно- и полимолекулярной адсорбции. Первая из них имеет физические свойства, несколько отличные от свойств обычной воды (она обладает свойствами упругого твердого тела; температура замерзания ее снижается до –70"С, плотность повышается). К осмотически связанной влаге относят и структурную, приобретенную при образовании и росте тела, например растительных клеток в древесине. Эта влага по своим свойствам не отличается от обычной жидкости. Физико-механическая влага (влага, удерживаемая в неопределенных количествах) включает влагу, находящуюся в микро- и макрокапиллярах, порах, пустотах, а также влагу смачивания, проникающую в материал при непосредственном соприкосновении его с жидкостью. Рис. 6.4. Классификация форм связи влаги с материалом
Микрокапиллярами называют, капилляры, в которых длина свободного пробега молекул много меньше диаметров капилляров. В них давление насыщенного пара над поверхностью мениска меньше давления насыщенного пара над открытой плоской поверхностью жидкости, поэтому возможен процесс капиллярной конденсации пара. Для нормальных условий капилляр радиусом R<10-5 см относится к микрокапиллярам. Влага, содержащаяся в макрокапиллярах, называется свободной. Несмотря на то что в действительности нет четкой границы между отдельными формами связи и видами влаги (одна форма может изменяться за счет другой), на рис. 6.4 показаны, схематически- формы связи и виды влаги коллоидного капиллярно-пористого тела. Количество влаги Gвл, содержащейся в материале в расчете на единицу массы абсолютно сухого материала Gc, называют влагосодержанием: в долях ; (6.1) в процентах ; (6.2) В сушильной технике используют иногда понятие влажности материала в расчете на единицу общей массы, т. е.: в долях ; (6.3) в процентах ; (6.4) Так как масса абсолютно сухого материала в процессе сушки остаётсянеизменной, то использование понятия влагосодержания предпочтительнее, что значительно упрощает расчеты процесса обезвоживания.
Дата добавления: 2014-11-29; Просмотров: 2234; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |