Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие об усталости материалов




Определение критической силы, задача Эйлера

Задача по определению критической силы Fcr впервые была решена Л.Эйлером в 1744 г. Рассмотрим сжатый стержень при условии, что стержень (рис. 5.30, а) изогнулся, т.е. сжимающая сила равна критической. Для изучения изгиба используем дифференциальное уравнение (5.79) изогнутой оси стержня

d2y/dx2 = Ми/EI. (5.92)

а
б

 

Рис. 5.30

Изгиб происходит в плоскости минимальной жесткости, т.е. поперечные сечения будут поворачиваться вокруг той оси, относительно которой момент инерции I имеет минимальное значение. Изгибающий момент по абсолютной величине в любом сечении равен

Ми = Fcr·y, (5.93)

где у – прогиб поперечного сечения. Так как прогиб у и вторая производная от него d2y/dx2 при любом направлении оси у всегда имеют противоположные знаки, уравнение (5.92) выразим как

d2y/dx2 = (–Fcr·y)/(EI). (5.94)

Обозначая

k2 = Fcr/(EI), (5.95)

представим уравнение (5.94) в виде y'' + k2y = 0. Это линейное дифференциальное уравнение второго порядка. Его общее решение имеет вид

y = C sin kx + D cos kx. (5.96)

Для определения постоянных интегрирования С и D используем известные граничные условия, а именно, условия крепления на концах стержня: при х = 0 и при х = ℓ прогиб отсутствует, т.е. у = 0.

Подставляя в уравнение (5.96) данные первого условия, определим, что D = 0, а стержень изгибается по синусоиде у = C sin kx. Из второго граничного условия найдем С sin kℓ = 0. Полученное соотношение справедливо, если С = 0 или sin kℓ = 0. Если считать С = 0, то при D = 0 прогиб (5.96) во всех поперечных сечениях по длине стержня при любых значениях х отсутствует, что противоречит исходной предпосылке. Выражение sin kℓ = 0 справедливо, когда kℓ = nπ, где n – произвольное целое число (n = 0, 1, 2, …). Подставляя значение k = (πn)/ℓ в выражение (5.95), получим что

Fcr = k2EI = (π2n2EI)/ℓ2. (5.97)

Чтобы стержень сохранял криволинейную форму, необходимо, чтобы сила была отлична от нуля, т.е. n ≠ 0. С практической точки зрения интерес представляет наименьшее значение критической силы, при действии которой происходит искривление оси стержня, потеря устойчивости. При n = 1 получаем наименьшее значение критической силы, равное

Fcr = (π2EI)/ℓ2. (5.98)

Используя особенности упругой линии, можно распространить полученное решение на другие случаи закрепления стержня. Так, если стержень на одном конце жестко защемлен, а на другом – свободен (рис. 5.30, б), то упругую линию стержня легко привести путем зеркального отображения относительно заделки к упругой линии шарнирно закрепленного стержня (рис. 5.30, а). Очевидно, критическая сила стержня с таким закреплением длиной будет равна критической силе шарнирно закрепленного стержня длиной 2ℓ.

Общее выражение критической силы для сжатого стержня в обобщенном виде с учетом его типа крепления примет вид

Fcr = (π2EI)/(υℓ)2, (5.99)

где υ – коэффициент приведения длины стержня (коэффициент Ясинского), т.е. число, показывающее, во сколько раз нужно изменить длину шарнирно опертого с обоих концов стержня, чтобы критическая сила его была равна критической силе стержня с конкретными условиями закрепления. Чаще всего концы сжимаемых стержней закрепляют одним из четырех способов, показанных на рис. 5.31. Коэффициенты приведения длины указаны на схемах крепления. Наиболее чувствительным к потере устойчивости является крепление, представленное на рис 5.31, а и наименее чувствительным – на рис. 5.31, г. Отметим, что применение формулы (5.99) правомерно только при условии, что деформация сжатого стержня в момент потери начальной формы равновесия является упругой.

а б в г

Рис. 5.31

5.17. Прочность при циклически изменяющихся нагрузках
(напряжениях)

Работа механизмов характеризуется определенностью движений и нагружений звеньев, повторяемостью через определенные промежутки времени (периоды) этих движений. Значительная часть элементов механизмов (валы, зубья зубчатых колес и т.д.) испытывает в процессе эксплуатации периодические изменяющиеся по величине и знаку механические нагрузки. Замечено, что при таком нагружении разрушение деталей происходит при напряжениях, значительно меньших предельных напряжений (предела текучести) при статическом нагружении. Характер разрушения материалов при переменных повторяющихся нагрузках существенно отличается от вида разрушения при статическом нагружении. Разрушение начинается с образования на поверхности элементов микротрещин, которые развиваются вглубь материала, уменьшая площадь поперечного сечения детали. Разрушение происходит внезапно при достаточном ослаблении сечения и на поверхности разрушения видны две характерные зоны: зона постепенного развития трещины и зона внезапного разрушения. Процесс постепенного накопления повреждений под действием повторяющихся знакопеременных нагрузок, приводящий к внешне непроявляющемуся изменению свойств (электропроводимость, микротвердость и др.) материала, к зарождению и развитию трещин, и, наконец, к разрушению элемента, называют усталостью. Усталостное разрушение – длительный процесс, связанный с многократным нагружением. Свойство материала (изделия) сопротивляться усталости называют выносливостью, или усталостной прочностью.

Совокупность последовательных значений напряжений (нагрузок) за один период называют циклом напряжений (нагрузок). Замечено, что сопротивление усталости зависит от значений наибольшего и наименьшего напряжений цикла, их отношения и практически не зависит от закона изменения (синусоидальный, треугольный, трапецеидальный и др.) напряжений внутри цикла. Будем считать, что напряжения меняются во времени по закону, близкому к синусоиде (рис. 5.32). Цикл напряжений характеризуется следующими величинами: максимальным σmax и минимальным σmin напряжениями, т.е. наибольшим и наименьшим по алгебраическому значению (с учетом знаков) напряжениями; средним напряжением σm, равным алгебраической полусумме σmax и σminm = (σmax + σmin)/2); амплитудой цикла напряжений σa, равной полуразности σmax и σmina = (σmax – σmin)/2); коэффициентом асимметрии цикла R, равным отношению минимального напряжения к максимальному, т.е. R = σmin/ σmax. На рис. 5.32, а показан асимметричный цикл напряжений, когда |σmax| ≠ |σmin|. Наиболее часто на практике встречаются симметричный и отнулевой циклы напряжений. Для симметричного цикла имеем σmax = σ; σmin = –σ; σa = σ; σm = 0; R = –1; а для отнулевого (пульсационного): σmax = σ; σmin = 0; σa = σm = σ/2; R = 0, где σ – максимальное по величине напряжение цикла. Постоянное статическое напряжение (рис. 5.32, г) можно рассматривать как частный случай переменного с параметрами σmax = σmin = σm = σ; σa = 0; R = + 1. Наиболее опасны симметричные циклы нагружения.

Все переменные циклы напряжений, кроме симметричного, называют асимметричными. Циклы с одинаковыми коэффициентами асимметрии R называют подобными. При действии переменных касательных напряжений все приведенные выше характеристики и соотношения остаются в силе с заменой σ на τ.

б
в
 
 
 
 
а
г

Рис. 5.32

5.17.2. Характеристики усталостной прочности материалов.
Предел выносливости

Основным параметром, характеризующим усталостную прочность материалов, т.е. прочность при повторяемых знакопеременных нагрузках, является предел выносливости σR – то максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение материала до базового числа Nσ циклов нагружения. За базовое, т.е. наибольшее число циклов из задаваемых при испытаниях принимают для черных металлов 107 циклов нагружения, а для цветных – 108. Индекс в обозначении предела выносливости соответствует коэффициенту асимметрии цикла напряжений при испытаниях. Так, для симметричного цикла предел выносливости обозначается σ–1, а для отнулевого – σ0. Предел выносливости материала определяется путем испытания образцов на усталость на испытательных машинах. Наиболее распространенным является испытание образцов при симметричном цикле напряжений. Схема установки для испытания образцов на изгиб показана на рис. 5.33. Образец 1 вместе с зажимом 2 вращается с постоянной угловой скоростью. На конце образца расположен подшипник 3, нагруженный силой F постоянного направления. Образец подвергается деформации изгиба с симметричным циклом. Максимальные напряжения возникают на поверхности образца в наиболее опасном сечении I – I и определяются как σ = Ми/W, где Ми = F·ℓ – изгибающий момент в сечении; W = 0,1d3 – момент сопротивления относительно нейтральной оси поперечного сечения образца, круга диаметром d. В представленном положении в точке А действуют растягивающие напряжения, так как образец изгибается выпуклостью вверх. После поворота образца на 180° в точке А будут действовать такие же по величине напряжения сжатия, т.е. –σ. При переходе через нейтральную ось напряжение в точке А будет равно нулю.

Рис. 5.33 Рис. 5.34

Путем испытаний до усталостного разрушения одинаковых образцов при разных значениях напряжений цикла строят график, характеризующий зависимость между максимальными напряжениями σ и числом циклов до разрушения (циклической долговечностью N). Эта зависимость (рис. 5.34) называется кривой усталости или кривой Веллера, в честь немецкого ученого, впервые ее построившую. Для построения кривой усталости в координатах σmax – N требуется не менее 10 одинаковых образцов, к которым предъявляются жесткие требования по точности размеров, шероховатости поверхности. Первый из образцов нагружают силой F так, чтобы максимальное напряжение цикла σ1 было несколько меньше предела прочности материала (σ1 < σu) и испытывают до разрушения, отмечая (рис. 5.34) точку А с координатами σ1 и числом циклов до разрушения N1.

Второй образец испытывают, создавая в нем напряжение σ2 меньшее, чем в первом (σ2 < σ1) образце. Число циклов до разрушения этого образца будет N2 (N2 > N1). На графике отмечают точку В с координатами σ2, N2. Снижая постепенно в испытываемых образцах максимальное напряжение цикла, испытания проводят до разрушения образцов, пока один из них не разрушится до базового числа Nσ циклов нагружения. Соединив последовательно плавной линией точки А, В, С, …, построенные при испытаниях образцов, получим кривую усталости. Напряжение, соответствующее базовому числу Nσ циклов, и есть предел выносливости σ–1 материала при изгибе. На других испытательных машинах аналогично испытанию на изгиб определяют пределы выносливости материала при кручении (τ–1), при растяжении – сжатии (σ–1р). Экспериментально установлены для многих материалов соотношения между пределами выносливости при изгибе, кручении и растяжении – сжатии. Например, для сталей τ–1 = 0,55σ–1; σ–1р = 0,7σ–1. Предел выносливости при симметричном цикле нагружения у всех металлов, кроме очень пластичных (медь, техническое железо), меньше предела упругости, с ростом частоты нагружения он незначительно увеличивается.

В литературе предлагаются десятки уравнений, описывающих кривые усталости разных материалов, образцов. В инженерных расчетах чаще всего используют степенное уравнение кривой усталости

σmN = const, (5.100)

где N – число циклов до разрушения при максимальном напряжении σ цикла; m – показатель степени, зависящий от материала, параметров образца, для металлов m = 5 … 10.

Часто срок работы изделий, особенно специального одноразового использования, ограничен, числом циклов нагружения N за время работы меньше базового (N < Nσ). Уравнение (5.100)позволяет при расчетах таких изделий на усталостную прочность определять предельно максимальные напряжения в циклах или ограниченный предел выносливости σ–1N, соответствующий заданному числу циклов N нагружения

, (5.101)

или рассчитать возможное число циклов N нагружения при задаваемом, большем предела выносливости, максимальном напряжении σ–1N цикла

N = Nσ–1–1N)m, (5.102)

где величины σ–1, Nσ, m берут из справочных данных по материалам. Использование уравнений (5.101) и (5.102) возможно только при сохранении неизменными физики и механизма усталостного повреждения при сохранении механизма многоцикловой усталости. Многоцикловая усталость гарантировано имеет место, если число циклов до разрушения не менее 104, т.е. N ≥ 104.

Определение характеристик усталостной прочности материалов путем испытаний на усталость трудоемкий и дорогостоящий процесс из-за длительности и значительного разброса результатов испытаний. Ищут эмпирические зависимости приближенной оценки значений предела выносливости от величины механических свойств материала при статическом нагружении. Так, величина предела выносливости при изгибе с симметричным циклом нагружения для углеродистой стали σ–1 = (0,4 … 0,45)σut; для цветных металлов σ–1 = = (0,24 … 0,5)σut, где σut – предел прочности материала при растяжении.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1800; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.