Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Будущее развитие 5 страница




При наличии подошвенных вод (граница нефтеносности проходит лишь по кровле пласта) задача заключается в том, чтобы при вскрытии пласта не пересечь водонефтяной контакт скважиной (забой скважины должен быть выше этого контакта) во избежания появления конусов обводнения уже в самом начале эксплуатации (рис. 5.19). По мере эксплуатации и подъема ВНК при наличии подошвенной воды обычно появляются конусы обводнения и борьба с ними весьма затруднена. При наличии в пласте (особенно в его подошвенной части) глинистых прослоев борьба с конусами обводнения значительно облегчается путем цементирования забоев скважин. При наличии в подошвенной части пласта глинистых прослоев, конусы обводнения вообще не образуются.

Если продуктивный горизонт сложен прерывистыми, литологически изменчивыми пластами и его кровля (подошва) не совпадает на отдельных участках залежи с поверхностями продуктивных коллекторов, определение положения контуров по структурным картам недопустимо. Оно может привести к завышению площади нефтегазонасыщенности. Чтобы не допустить этого, положение контуров нужно определять по картам кровли поверхностей проницаемой части горизонта.

В целом, как видно из изложенного, форма залежей определяется формой каждой из рассмотренных границ и характером линий их пересечения. Соответственно выделяют залежи:

· повсеместно оконтуренные внешним контуром нефте- или газоносности;

· оконтуренные на разных участках внешним контуром и границей замещения (выклинивания) коллекторов;

· оконтуренные внешним контуром и линией дизъюнктивного нарушения.

Встречаются залежи, полностью расположенные в границах залегания коллекторов, приуроченные к блоку, со всех сторон ограниченному тектоническими нарушениями, а также залежи с участием всех четырех видов границ.

Характер поверхностей, ограничивающих залежь, во многом определяет степень связи залежи с законтурной областью и ее энергетические возможности [20].

 

Контрольные вопросы к главе 5.1

1. Что понимается под природным резервуаром? Только ли породы коллекторы входят в его состав?

2. Какиегруппы входят в состав класса литологических залежей?

3. Какие месторождения называются однопластовыми, какие многопластовыми?

4. Как подразделяются месторождения по начальному фазовому состоянию и составу основных УВ соединений?

5. В чем заключается суть метода линейной интерполяции при построении структурных карт?

6. Как называется расстояние по вертикали от устья скважины до уровня моря?

7. Что такое внутренний и внешний контур нефтеносности?

8. Каким образом проводится граница при выклинивании пласта?

 


5.2. Изучение внутреннего строения залежей и свойств пород коллекторов

Внутренний объем залежей обычно характеризуется большой сложностью его строения. В нем принимают участие разные типы пород, из которых основными являются породы-коллекторы и неколлекторы. Их соотношение, взаиморасположение по объему залежи является первым показателем внутреннего строения, подлежащим изучению и моделированию. Другим не менее важным показателем внутреннего строения является изменчивость свойств пород-коллекторов. Оба эти показателя относят к разряду геологических неоднородностей.

5.2.1. Понятие и виды геологических границ

Геологические границы различаются по процедуре выделения. По геологической природе они могут быть литологическими, геофизическими, биостратиграфическими и т. д., т. е. по геологической природе может быть выделено столько границ, сколько свойств изучается в соответствии с заданным списком. Кроме того, границы различаются по мерности: двумерные (поверхность в объеме залежи), одномерные (линии на картах, схемах и геологических разрезах) и нуль-мерные (точки на разрезах скважин).

По процедуре выделения различают границы резкостные, дизъюнктивные, условные и произвольные.

К резкостным границам относятся естественные геологические границы, которые отмечаются по резкой смене физических свойств, петрографической структуры, характера насыщения пород и т. п. Таковы, например, поверхности напластования, разделяющие в разрезе коллекторы и неколлекторы, контуры нефте- и газоносности и т. п.

Дизъюнктивными являются естественные геологические границы, связанные с разрывом сплошности геологического пространства. Эти границы могут сочетаться с резкостными и условными (например, нарушенная резкостная или условная граница). Дизъюнктивные границы представляют собой тектонический контакт в виде поверхности, линии или точки. При переходе через такую границу свойства пород могут резко меняться, если в результате сильного смещения контактирующими через границу оказываются слои разного литологического состава.

Условные геологические границы не относятся к естественным, хотя они выделяются с учетом распределения свойств пород в пространстве. Условные границы представляют собой поверхности, линии или точки, на которых отдельные свойства из заданного списка принимают некоторые фиксированные значения. Такими значениями будут, например, кондиционные значения пористости или проницаемости, которые разделяют нефтенасыщенные породы на продуктивные и непродуктивные коллекторы.

Произвольные границы не связаны с распределением свойств пород. Их положение в пространстве зависит только от поставленных задач, обусловлено соображениями удобства, экономической целесообразности и т. п. Например, многие свойства коллекторов нефти и газа определяются по керну, поверхность которого может рассматриваться как произвольная геологическая граница. К этому типу могут быть отнесены границы категорий запасов, которые не приурочиваются к каким-либо естественным или условным границам, а проводятся по скважинам, и границы опытных и других участков залежи, выделяемых при анализе разработки.

Простые и сложные геологические тела. Часть геологического пространства, ограниченная геологическими границами, называется геологическим телом. Для выделения геологического тела достаточно указать его границы.

Геологические тела, внутри которых по выбранному списку свойств нельзя провести ни одной естественной или условной границы, называются простыми, а тела, внутри которых можно провести хотя бы одну такую границу, – сложными. Тело, среди границ которого имеются и условные, называется условным геологическим телом. При рассмотрении сложного тела как системы, составляющие его неусловные, условные, а также произвольные простые тела выступают как элементы системы.

Таким образом, залежь нефти или газа в целом представляет собой геологическое тело высокой сложности, внутри которого выделяются геологические тела низших уровней структурной организации, ограничиваемые как естественными (резкостными и дизъюнктивными), так и условными, и произвольными границами, проводимыми в соответствии с геолого-техническими требованиями разработки и эксплуатации скважин и пластов.

5.2.2. Расчленение продуктивной части разреза скважины

Расчленение продуктивной части разреза скважины – это выделение слоев различного литологического состава, установление последовательности их залегания и в конечном итоге выделение коллекторов и непроницаемых разделов между ними. Решаются эти задачи с помощью комплекса методов изучения разрезов. В этом комплексе в настоящее время основное место занимают геофизические методы, которыми в обязательном порядке исследуются скважины всех категорий (поисковые, разведочные, нагнетательные и др.). Данные геофизических исследований увязываются с имеющимися геологическими данными описания и анализа образцов пород (шлама, керна), с данными опробования интервалов на приток и с результатами исследования скважин гидродинамическими методами.

Достоверность расчленения зависит от степени изученности геологического разреза, уровня теоретической разработки геофизических методов исследования скважин и общей геофизической характеристики района, полученной сейсмическими методами. Выделению коллекторов по геофизическим данным способствует наличие характерных показаний на различных геофизических кривых. Интерпретация кривых наиболее достоверна при совместном использовании в комплексе геофизических и геологических исследований. При этом имеем в виду, что керн в ряде случаев не дает достаточно полного представления о положении границ в разрезе залежи. Это связано с низким процентом выноса керна, обусловленным несовершенством колонковых долот, вследствие чего на поверхность поднимаются преимущественно более крепкие и глинистые породы, а рыхлые и сильнотрещиноватые не всегда выносятся. Длина полученного керна может быть меньше длины интервала проходки, что затрудняет точную привязку керна к глубинам.

Выделение коллекторов в терригенном и карбонатном разрезах имеет свои особенности (рис 5.20).

Песчаные и алевролитовые коллекторы в терригенных разрезах, являющиеся обычно поровыми коллекторами, выделяются наиболее надежно по совокупности диаграммы ПС, кривой ГК и кавернограммы – по наибольшему отклонению кривой ПС от линии глин, по минимальной гаммаактивности на кривой ГК, по сужению диаметра скважины на кавернограмме в результате образования глинистой корки при бурении скважины.

Для распознавания глинистых коллекторов используют следующий комплекс: амплитуды кривой ПС, удельные сопротивления, кавернограммы, кривые микрокаротажа, гамма-каротажную кривую.

Коллекторы в карбонатном разрезе (известняки и доломиты) имеют различные структуры пустотного пространства. Распознавание отдельных типов по геологическим и геофизическим материалам весьма сложно.

Петрофизические свойства микрокавернового ("порового") карбонатного коллектора близки к таким же свойствам гранулярных песчаных коллекторов. Выделение коллекторов в карбонатном разрезе в этом случае заключается в расчленении разреза теми же методами на плотные и пустотные породы и в выделении среди последних высокопористых разностей. При тонком переслаивании плотных и пористых разностей наиболее надежные результаты могут быть получены по данным микрозондирования.

Для выделения в карбонатном разрезе трещиноватых и кавернозных пород разработаны специальные комплексы геофизических исследований и их интерпретации: электрометрия, нейтронный каротаж, результаты анализа керна; проведение повторных измерений в скважине при смене растворов (метод двух растворов); совместное использование данных радиометрии и акустического каротажа и др.

Учитывая отмеченные особенности подходов к расчленению терригенного и карбонатного разрезов, для каждого конкретного объекта (продуктивного горизонта, толщи) в зависимости от литологического состава пород, слагающих разрез, толщин отдельных слоев и пластов выбирается определенный комплекс геофизических исследований скважин, включающий методы, наиболее информативные в данных конкретных условиях.

Если разрез сложен часто чередующимися песчано-глинистыми и карбонатными породами, задача выделения коллекторов осложняется.

Глины на каротажных диаграммах характеризуются следующими признаками:

· на диаграммах КС и ИК против глин обычно регистрируются низкие значения кажущегося сопротивления, которые увеличиваются при повышении плотности и карбонатности глин;

· на диаграммах ПС глинам отвечают положительные аномалии (кривая занимает правое положение);

· высокое значение гамма-излучения.

Песчаники характеризуются:

· широким диапазоном кажущегося сопротивления; для газоносных и нефтеносных пород обычно характерны высокие значения КС, для водоносных – низкие;

· отрицательными аномалии ПС, уменьшающимися при увеличении глинистости песчаного пласта;

· уменьшением диаметра скважины из-за образования глинистой корки.

Карбонатные породы (известняки и доломиты) характеризуются:

· широким диапазоном изменения КС в зависимости от типа и значения пористости, характера насыщения; нефтегазонасыщенные породы имеют более высокие значения, чем водонасыщенные;

· отрицательными аномалиями ПС, уменьшающимися при увеличении глинистости;

· низкими значениями гамма-излучения, возрастающими с увеличением глинистости;

· зависимостью величины диаметра скважины от структуры пустотного пространства.

Результаты расчленения геофизического разреза скважины и выделения пород коллекторов изображаются на каротажной диаграмме в левой ее стороне в виде литологической колонки.

На каротажной диаграмме каждой из скважин проводится вертикальная линия, соответствующая полученному кондиционному значению αПС. Пласты, против которых линия ПС располагается левее линии кондиционного предела αПС, относят к коллекторам.

При изучении разрезов скважин выделяются:

1) общая толщина горизонта (пласта) – расстояние от кровли до подошвы, определяемое в стратиграфических границах;

2) эффективная толщина, равная общей толщине за вычетом толщины прослоев неколлекторов, выделенных в разрезе горизонта;

3) нефтенасыщенная (газонасыщенная) толщина, равная суммарной толщине прослоев нефтегазонасыщенных коллекторов. В чисто нефтяной зоне залежи (во внутреннем контуре нефтеносности) эффективная толщина равна нефтенасыщенной. В водонефтяной (водогазовой) зоне пласта нефтенасыщенная (газонасыщенная) толщина определяется как часть эффективной в интервале от его кровли до поверхности ВНК или ГВК.

Кондиционными называют граничные значения свойств нефтегазонасыщенных пород, разделяющих их на коллекторы и неколлекторы, а также на коллекторы с разными промысловыми характеристиками. Эти граничные значения называют также нижними пределами значений свойств продуктивных коллекторов.

Проведение границ между коллекторами и неколлекторами или между коллекторами разной продуктивности по кондиционным значениям разных свойств дает неодинаковые результаты, так как связи между различными свойствами пласта носят стохастический характер – фиксированному значению одного параметра соответствует несколько значений других параметров. Например, породы с одинаковыми значениями коэффициента проницаемости могут различаться по значениям коэффициентов пористости, нефтегазонасыщенности, коэффициента вытеснения и др. Пропластки с одинаковой проницаемостью или пористостью различаются по значениям удельных коэффициентов продуктивности. Нередки случаи, когда из пород, по граничным значениям проницаемости отнесенных к неколлекторам, получают промышленные притоки нефти, а из пород, по граничным значениям пористости отнесенных к коллекторам, притоков не получают.

Большинство исследователей пришло к выводу, что для определения границы между коллекторами и неколлекторами следует использовать геофизические показатели, отражающие совокупность сложно взаимодействующих свойств пород, или какой-то комплексный параметр, характеризующий емкостно-фильтрационные свойства породы одним числом. Предельные значения параметров коллекторов необходимо обосновать в каждой скважине для каждого пласта на основе комплексного использования данных лабораторного анализа керна, геофизических и гидродинамических исследований скважин.

5.2.3. Детальная корреляция разрезов скважин

Составление адекватной модели залежи возможно лишь при наличии надежной детальной корреляции продуктивных разрезов пробуренных скважин.

Под детальной корреляцией понимается сопоставление продуктивной части разрезов скважин в целях выделения одноименных пластов (прослоев) и прослеживания границ их залегания (стратиграфических, литологических, тектонических) по площади и построению в виде карт, профилей, схем и т. д. статической модели, отражающей строение продуктивной части разреза (продуктивного пласта).

В зависимости от решаемых задач различают региональную, общую и детальную корреляцию.

Региональную корреляцию проводят в пределах региона или бассейна седиментации в целях стратиграфического расчленения разреза, определения последовательности напластования литолого-стратиграфи-ческих комплексов, выявления несогласий в залегании пород. Ведущую роль при этом играет биостратиграфическая идентификация сопоставляемых отложений. Результаты региональной корреляции используют при решении поисковых задач и в качестве основы для общей корреляции.

Общую корреляцию выполняют на более поздних стадиях разведочных работ в пределах месторождений с целью выделения в разрезах скважин одноименных стратиграфических свит, литологических пачек, продуктивных и маркирующих горизонтов. При общей корреляции сопоставляются разрезы скважин по всей вскрытой толщине от их устьев до забоев. Сопоставление ведется по биостратиграфическим и лито-стратиграфическим признакам, получаемым при обработке керна и по данным геофизических исследований (ГИС). Результаты общей корреляции используются при решении разведочных задач таких, как обоснование выделения этажей разведки, а также учитываются при детальной корреляции.

Детальную корреляцию проводят для продуктивной части разреза на стадии подготовки залежи к разработке и в период разработки. Основная задача детальной корреляции – обеспечить построение модели, адекватной реальному продуктивному горизонту. При этом должны быть решены задачи выделения границ продуктивного горизонта, определения расчлененности горизонта на пласты и прослои, выявления соотношений в залегании проницаемых и непроницаемых пород, характера изменчивости по площади каждого отдельного пласта, положения стратиграфических и других несогласий в залегании пород и др.

При детальной корреляции основное место отводится хроностратиграфическим и лито-стратиграфическим признакам, определенным по промыслово-геофизическим данным с привлечением результатов исследования керна.

На основе детальной корреляции делаются все геологические построения, отображающие строение залежей нефти и газа. От правильного ее проведения во многом зависят обоснованность принимаемых технологических решений при разработке залежей нефти и газа, точность подсчета запасов, надежность прогноза конечной нефтеотдачи и др.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 614; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.