Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные уравнения. Реальная цепь, в которой возникает резонанс, содержит кроме катушки индуктивности и конденсатора активное сопротивление (рис




 

Реальная цепь, в которой возникает резонанс, содержит кроме катушки индуктивности и конденсатора активное сопротивление (рис. 4.2).

Рис. 4.2.

 

На основании 2-го закона Кирхгофа для цепи, изображенной на рис. 4.2 запишем:

(4.7)

а учитывая, что

, , ,

имеем:

(4.8)

Первые два члена выражения (4.8) представляют собой падения напряжений, совпадающие по фазе с током (падения напряжений на активных сопротивлениях)

(4.9)

где - активное сопротивление всей цепи, два других члена - напряжения, отличающихся по фазе на от тока - реактивную составляющую напряжения

(4.10)

где - реактивное сопротивление всей цепи. Подставим (4.9) и (4.10) в (4.8), получим

или переходя к мощностям

(4.11)

а с учётом (4.8), (4.9), (4.10)

(4.12)

Выражения, полученные ранее, позволяют записать значения , , , , , через питающее напряжение и параметры цепи , , , .

(4.13)

 

(4.14)

(4.15)

(4.16)

 

(4.17)

При резонансе (т. е. ) выражения для электрического состояния имеют следующий вид:

 

При резонансе цепь становится чисто активной (, ), полное сопротивление цепи имеет минимальное значение, а ток максимальное. Напряжения на индуктивности и емкости равны и в добротность раз больше питающего (возбуждающего напряжения) напряжения. Активная мощность имеет максимальное значение ().

Наступление резонанса в цепи нельзя определить с помощью условий резонанса (выражениями (4.2), (4.3), (4.4)) поскольку одна из величин этих выражений не измеряется, поэтому пользуются косвенными - максимум тока или активной мощности. Наиболее точный способ определения наличия резонанса в цепи - достижение фазового сдвига между напряжениями питания и током цепи равного 0. Однако он используется реже, поскольку необходим достаточно сложный прибор - фазометр.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.