Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Прямоугольное (равномерное) распределение




Распределение редких событий (Пуассона)

Когда вероятности альтернатив неравны, т. е. р ≠ q, биномиальное распределение асимметрично. При очень малой вероятности ожидаемого события, исчисляемой сотыми или тысячными долями единицы, по сравнению с вероятностью q противоположного события распределение вероятности или частоты таких событий описывается формулой Пуассона.

Модель такого распределения получают на основе независимых испытаний при постоянной вероятности р наступления некоторого случайного события X.

Как известно, вероятность того, что в n испытаниях случайное событие наступит равно m раз, определяется формулой, выражающей функцию распределения вероятностей для биномиального распределения.

Примем теперь дополнительные условия, а именно, что вероятность р наступления случайного события в единичном испытании весьма мала, но число испытаний n весьма велико, n , а произведение (обозначим его λ) – число постоянное и не очень большое.

При таких дополнительных условиях на основе формулы биноминального распределения получим следующее выражение для распределения вероятностей случайной переменной X:

(3.3)

где: λ = np; р = λ/n.

Так как числитель первой дроби имеет m сомножителей, а в знаменателе стоит nm, каждый из сомножителей можно разделить на n. Получим:

(3.4)

При n предел любой дроби (1 – λ/n) = 1,

а предел (1 – λ/n)n-m =e

При этих условиях:

(3.5)

Выражение (3.5) называется функцией распределения вероятностей в распределении Пуассона.

В этом выражении m – частота ожидаемого события в n испытаниях, е = 2,7183; параметр λ = nр равен математическому ожиданию или наиболее вероятной частоте события, , а также дисперсии .

Для практических расчетов, когда находят теоретические ординаты распределения n, т. е. численности распределения случайного события X, выражение (3.5) умножают на N – общее число наблюдений, вместо принимают экспериментальное среднее число наблюдаемых случаев. Формула для n будет:

(3.6)

Распределение Пуассона с возрастанием средней X приближается к биномиальному. Распределение Пуассона описывает многие явления в технике и биологии. В технике оно находит широкое применение при контроле качества продукции, для аппроксимации распределения дефектных изделий. В биологии оно применяется как модель распределения числа семян сорняков – примесей в пробных навесках при анализе семян, поврежденных вредителем. Оно описывает также распределение численности возобновления, когда размер элементарных учетных площадок очень мал или условия заселения, площади неблагоприятны, так что вероятность благоприятного исхода р мала.

 

Вопросы для самоконтроля

 

1 Что такое биномиальная кривая распределения? Какая общая формула является основой для биномиального распределения?

2 Для анализа какого вида случайных переменных используются биномиальное распределение и распределение Пуассона?

3 Что такое n в биноме (р + q)n?

4 Какими параметрами характеризуется биномиальное распределение?

5 Является ли биномиальное распределение дискретным или непрерывным?

6 Чем отличается распределение Пуассона от биномиального?

7 Какие параметры биномиального распределения можно получить с помощью треугольника Паскаля и формулы Я. Бернулли?

8 При каких условиях предпочтительнее применять распределение Пуассона?

9 При каких условиях распределение Пуассона приближается к биномиальному?

10 Какими параметрами характеризуется распределение Пуассона?

11 Что означают максимальное значение и крайние левые и правые значения на графике кривой биномиального распределения?

ТЕМА 4 Основные модели теоретических распределений

4.1 Прямоугольное (равномерное) распределение

4.2 Нормальное распределение

4.3 Логарифмически нормальное распределение

Прямоугольное (равномерное) распределение — простейший тип непрерывных распределений. Если случайная переменная X может принимать любое действительное значение в интервале (а, b), где а и b – действительные числа, и если каждому значению случайной переменной соответствует одинаковая плотность вероятности, то переменная X имеет прямоугольное распределение. Иногда пользуются термином «равномерное распределение».

Из приведенного определения следует, что плотность распределения вероятностей этой случайной переменной должна быть постоянной, т. е. что в интервале (a, b) f(x) = с. Отсюда, а также из условия, что интеграл от функции f(x), взятый в интервале (а, b), должен равняться единице, нетрудно найти функцию плотности вероятности f(x). Имеем:

(4.1)

откуда cb – са = 1 и, следовательно, получим . Таким образом, функция плотности вероятности для прямоугольного распределения:

для a ≤ x ≥ b. (4.2)

Для х > b и х < а плотность равняется нулю. Нетрудно вычислить математическое ожидание и дисперсию рассматриваемой случайной переменной. Имеем:

(4.3)

(4.4)

Отсюда находим, что дисперсия D2(X) равняется:

(4.5)

Прямоугольное распределение находит широкое применение в математической статистике. Оно имеет основополагающее значение для так называемых непараметрических методов – одного из новейших разделов статистики, находящего все более широкое применение. Понятием прямоугольного распределения иногда пользуются и в теории статистических оценок – в том разделе статистики, где изучаются методы построения выводов о значениях параметров в генеральной совокупности на основании случайной выборки. В некоторых теориях статистического вывода за исходный пункт принимается правило: что, если нам ничего неизвестно о значении оцениваемого параметра, то следует принять, что каждое его значение равновозможно. Это ведет к истолкованию оцениваемого параметра как случайной переменной, характеризующейся прямоугольным распределением.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1344; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.