КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Еще пример бинарного отношения
Функциональное отношение Определение 10. Отношение на декартовом произведении двух множеств называется функциональным отношением, если оно обладает следующим свойством: 1. Если и , то (однозначность функции). Обычно, функциональное отношение обозначают в виде функциональной зависимости - тогда и только тогда, когда . Функциональные отношения (подмножества декартового произведения!) называют иначе графиком функции или графиком функциональной зависимости. Предикат функционального отношения есть просто выражение функциональной зависимости . Пример 5. Пусть множество есть следующее множество молодых людей: {Вовочка, Петя, Маша, Лена}, причем известны следующие факты: 1. Вовочка любит Вовочку (эгоист). 2. Петя любит Машу (взаимно). 3. Маша любит Петю (взаимно). 4. Маша любит Машу (себя не забывает). 5. Лена любит Петю (несчастная любовь). Информацию о взаимоотношения данных молодых людей можно описать бинарным отношением "любить", заданном на множестве . Это отношение можно описать несколькими способами. Способ 1. Перечисление фактов в виде произвольного текста (как это сделано выше). Способ 2. В виде графа взаимоотношений: Рисунок 1 Граф взаимоотношений Способ 3. При помощи матрицы взаимоотношений:
Таблица 1. Матрица взаимоотношений Способ 4. При помощи таблицы фактов:
Таблица 2 Таблица фактов С точки зрения реляционных баз данных наиболее предпочтительным является четвертый способ, т.к. он допускает наиболее удобный способ хранения и манипулирования информацией. Действительно, перечисление фактов как текстовая форма хранения информации уместна для литературного произведения, но с трудом поддается алгоритмической обработке. Изображение в виде графа наглядно, и его удобно использовать как конечную форму представления информации для пользователя, но хранить данные в графическом виде неудобно. Матрица взаимоотношений уже больше соответствует требованиям информационной системы. Матрица удобна в обработке и компактно хранится. Но одно небольшое изменение, например, появился еще Вася и влюбился в несчастную Лену, требует перестройки всей матрицы, а именно, добавления и колонок, и столбцов. Таблица фактов свободна от всех этих недостатков - при добавлении новых действующих лиц просто добавляются новые строки. Что касается предиката данного отношения, то он имеет следующий вид (дизъюнктивная нормальная форма): R(x,y) = {(x = "Вовочка" AND y = "Вовочка") OR (x = "Петя" AND y = "Маша") OR (x = "Маша" AND y = "Петя") OR (x = "Маша" AND y = "Маша") OR (x = "Лена" AND y = "Петя")} Замечание. Приведенное отношение не является ни транзитивным, ни симметричным или антисимметричным, ни рефлексивным, поэтому оно не является ни отношением эквивалентности, ни отношением порядка, ни каким-либо другим разумным отношением. Замечание. Большая часть мировой литературы существует и имеет смысл лишь постольку, поскольку бинарное отношение "любить" не является отношением эквивалентности. В частности, по этой причине человечество не разбивается на классы эквивалентности взаимно любящих особей. Изучением характеристик данного отношения и соответствующего ему предиката занималось (и продолжает заниматься) большое количество экспертов, таких как Толстой Л.Н., Шекспир В. и др. n-арные отношения (отношения степени n) В математике n-арные отношения рассматриваются относительно редко, в отличие от баз данных, где наиболее важными являются именно отношения, заданные на декартовом произведении более чем двух множеств. Пример 6. В некотором университете на математическом факультете учатся студенты Иванов, Петров и Сидоров. Лекции им читают преподаватели Пушников, Цыганов и Шарипов, причем известны следующие факты:
Для того чтобы формально описать данную ситуацию (например, в целях разработки информационной системы, учитывающей данные о ходе учебного процесса), введем три множества:
Имеющиеся факты можно разделить на две группы. 1 группа (факты 1-3) - факты о преподавателях, 2 группа (факты 4-6) - факты о студентах. Для того чтобы отразить факты 1-3 (характеризующие преподавателей и читаемые ими лекции), введем отношение на декартовом произведении , где - множество рациональных чисел. А именно, упорядоченная тройка тогда и только тогда, когда преподаватель читает лекции по предмету в количестве часов в семестр. Назовем такое отношение "Читает лекции по…". Множество кортежей, образующих отношение удобно представить в виде таблицы:
Таблица 3 Отношение "Читает лекции по…" Для того чтобы отразить факты 4-6 (характеризующие посещение студентами лекций), введем отношение на декартовом произведении . Упорядоченная тройка тогда и только тогда, когда студент посещает лекции по предмету у преподавателя . Назовем это отношение "Посещать лекции". Его также представим в виде таблицы:
Таблица 4 Отношение "Посещать лекции" Рассмотрим отношение подробнее. Оно задано на декартовом произведении . Это произведение, содержащее 3*3*3=27 кортежей, можно назвать "Студенты-Лекции-Преподаватели". Множество представляет собой совокупность всех возможных вариантов посещения студентами лекций. Отношение же показывает текущее состояние учебного процесса. Очевидно, что отношение является изменяемым во времени отношением. Итак, факты о ходе учебного процесса удалось отразить в виде двух отношений третьей степени (3-арных), а сами отношения изобразить в виде таблиц с тремя колонками. Удобство использования табличной формы для задания отношения определяется в данном случае следующими факторами:
Нас сейчас не интересует вопрос, хороши ли полученные отношения. Заметим пока только, что, как показывают следующие замечания, не любую строку можно добавить в таблицу "Посещать лекции". Замечание. В таблицу "Посещать лекции" нельзя добавить две одинаковые строки, т.к. таблица изображает отношение , а в отношении (как и в любом множестве) не может быть двух одинаковых элементов. Это пример синтаксического ограничения - такое ограничение задано в определении понятия отношение (одинаковых строк не может быть ни в одной таблице, задающей отношение). Замечание. В таблицу "Посещать лекции" нельзя добавить кортеж (Иванов, Геометрия, Пушников). Действительно, из таблицы "Читает лекции по…", представляющей отношение , следует, что Пушников не читает предмет "Геометрия". Оказалось, что таблицы связаны друг с другом, и существенным образом! Это пример семантического ограничения - такое ограничение является следствием нашей трактовки данных, хранящихся в отношении (следствием понимания смысла данных).
Дата добавления: 2014-11-29; Просмотров: 558; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |