Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Промышленные магнитотвердые материалы




Магнитотвердые материалы

 

Магнитотвердые материала идут на изготовление постоянных магнитов, запасенная магнитная энергия которых оценивается как произведение остаточной индукции на величину коэрцитивной силы

Емаг = НсBr (3.6)

Для того чтобы увеличить коэрцитивную силу нужно затруднить смещение границ доменов. Для этого необходимо чтобы магнитная анизотропия была максимальной, размер зерен был минимальным и материал должен содержать частицы, препятствующие движению границ доменов. Иначе говоря, требования к структуре магнитотвердых материалов прямо противоположны требованиям к требованиям магнитомягких материалов.

 

Самыми «старыми» магнитотвердыми материалами являются углеродистые стали, закаливаемые на мартенсит. Для понимания природы повышения коэрцитивной силы при закалке сталей следует рассмотреть диаграмму состояния сплавов системы «железо - цементит» (см. рисунок 51).

До температуры 911°С железо имеет ОЦК решетку, выше этой температуры термодинамически более выгодной становится ГЦК решетка. Углерод может образовывать с железом химическое соединение цементит - Fe3C, а также растворяться в железе. Раствор углерода в железе с ОЦК решеткой принято называть феррит, а раствор углерода в железе с ГЦК решеткой принято называть аустенит. Области существования феррита, аустенита и цементита на диаграмме состояния отмечены как Ф, А, и Ц. Области существования двух фаз помечены как Ф+А, А+Ц, Ф+Ц.

Важно отметить, что растворимость углерода в аустените существенно выше растворимости углерода в феррите. Это связано с тем, что на одну элементарную ячейку ГЦК решетки аустенита приходится всего одна межатомная пора, и размер ее много больше размера межатомной поры в решетке феррита.

При охлаждении чистого железа при температуре 911°С происходит перестройка ГЦК решетки в ОЦК, или превращение аустенита в феррит (рис.51). При наличии в сплаве углерода температура превращения аустенита в феррит снижается, за счет того, что раствор углерода в аустените имеет большую энтропию, чем раствор углерода в феррите и, следовательно, меньшую свободную энергию.

 

При медленном охлаждении сплавов системы Fe-C (сталей) из температурной области аустенита углерод диффузионным путем выделяется в виде цементита, а решетка аустенита перестраивается в решетку феррита. При резком охлаждении сталей углерод не успевает выделиться из аустенита и при перестройке кристаллической решетки решетка феррита оказывается искаженной застрявшими атомами углерода. В результате вместо ОЦК решетки получается тетрагональная объемно-центрированная решетка или решетка мартенсита. Поскольку решетка мартенсита упакована неплотно, то при мартенситном превращении в стали возникают напряжения. Рост напряжений приводит к росту энергии системы, поэтому полного превращения аустенита в мартенсит не происходит и в стали формируется структура, состоящая их дисперсной смеси аустенита и мартенсита. Поскольку решетка аустенита плотноупакована, то аустенит не ферромагнитен. В то же время у ферромагнитного мартенсита неплотноупакованная тетрагональная решетка, что обусловливает его ферромагнетизм. Кроме того, тетрагональность мартенсита приводит к большой анизотропии его магнитных свойств. Таким образом, получается идеальная с точки зрения магнитотвердых материалов структура - дисперсная смесь ферромагнитной и неферромагнитной фаз, причем у ферромагнитной фазы большая магнитная анизотропия. Однако свойства сталей, закаленных на мартенсит далеки от идеала, причина состоит в том, что у закаленных сталей большой объем занят неферромагнитной фазой - аустенитом, поэтому их намагниченность, а следовательно, и остаточная индукция, невелики. Другим недостатком сталей мартенситного класса является их низкая прокаливаемость - способность воспринимать закалку на значительную глубину, что препятствует мартенситному превращению в глубинных слоях материала. Для повышения прокаливаемости стали дополнительно легируют хромом вольфрамом молибденом и кобальтом. Поскольку атомы легирующих элементов взаимодействуют с вакансиями, то скорость диффузии снижается и превращение аустенита в ферритно-цементитную смесь затрудняется. Таким образом, прокаливаемость сталей возрастает. Особенно эффективно легирование сталей кобальтом, поскольку у атомов кобальта имеется магнитный момент и при наличии кобальта остаточная индукция возрастает.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.