Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Проводниковые материалы. Высококоэрцитивные магниты




Высококоэрцитивные магниты.

Магнитотвердые ферриты

Из магнитотвердых ферритов наиболее известен бариевый феррит BaOґ6Fe2O3 (ФБ, ферроксдюр). В отличие от магнитомягких ферритов он имеет не кубическую, а гексагональную решетку с одноосной анизотропией. Высокая коэрцитивная сила обусловлена малым размером зерен и сильной кристаллографической анизотропией. Помимо бариевого феррита используются хромбариевый феррит (ХБ) и кобальтовый феррит

Технология получения магнитотвердых ферритов в общих чертах похожа на технологию получения магнитомягких ферритов. Однако для получения мелкокристаллической структуры, осуществляют очень тонкий помол (как правило, в водной среде), а спекание проводят при относительно невысоких температурах для избежания роста зерен.

Для придания анизотропии магнитных свойств материал текстурируют. Для создания текстуры сметанообразную массу помещают в сильное магнитное поле, которое отключают только после формирования изделия и его полного высыхания. Бариевые анизотропные ферриты маркируются БА, хромобариевые - ХБА, кобальтовые КА. Изотропные, нетекстурированные магниты маркируются БИ, ХБИ и КИ соответственно.

Ферритные материалы значительно дешевле металлических. Вместе с тем у них существенно ниже удельный вес. Высокая коэрцитивная сила позволяет изготавливать магниты с малым отношением длины к поперечному сечению.

К недостаткам магнитотвердых ферритов следует отнести низкую механическую прочность, хрупкость, высокую чувствительность к изменению температуры. Кроме того при охлаждении до – 60°С и повторном нагреве они теряют ферромагнитные свойства.

 

К этой группе материалов относят сплавы редкоземельных элементов с кобальтом типа RСo5 или RСо17, а также сплавы железа или кобальта с платиной. Эти материалы обладают рекордной запасенной магнитной энергией, однако, их широкому применению мешает высокая стоимость.

 

Все проводниковые материалы можно условно разделить на три группы: 1) материалы высокой электропроводности, используемые для изготовления проводников; 2) металлические материалы высокого удельного электрического сопротивления, применяемые для изготовления резисторов и нагревательных элементов; 3) материалы для изготовления контактов.

Одной из важнейших характеристик проводниковых материалов является их электропроводность (g):

g=nqm (4.1)

где: n - концентрация носителей заряда, q - величина заряда, m - подвижность носителей заряда.

Очевидно, что у материалов высокой электропроводности и контактных материалов электропроводность должна быть достаточно велика, тогда как электропроводность материалов высокого электросопротивления должна быть мала.

Основными носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. Как известно металлическая связь образуется между атомами элементов с валентной электронной оболочкой заполненной менее чем на половину. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. При этом валентные электроны становятся свободными, образуя «электронный газ». Ранее мы отмечали, что чем выше плотность электронного газа, тем плотнее упакована кристаллическая решетка металлов. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

Помимо концентрации электронов на электропроводность оказывает влияние и их подвижность. На подвижность электронов в основном оказывают влияние два фактора: наличие дефектов кристаллической решетки и строение внутренних электронных оболочек атомов. При любом искажении кристаллической решетки распространение электронных волн затрудняется, что аналогично снижению подвижности электронов. Резко снижает подвижность электронов наличие незаполненных внутренних электронных оболочек. В этом случае свободные электроны могут временно захватываться незаполненными внутренними оболочками атомов. Поэтому электропроводность переходных металлов существенно ниже электропроводности обычных металлов.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 705; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.