Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Коэффициенты Фибоначчи и процентные отношения длины коррекции





Числа Фибоначчи - математическая основа теории волн

Как признавал сам Элиот в своей работе "Законы природы", математической основой теории стала последовательность чисел, которую открыл (или, чтобы быть точнее, вновь открыл) Фибоначчи в XIII веке. В его честь открытую им последовательность стали называть "числами Фибоначчи".

Фибоначчи в свое время опубликовал три большие работы, самая знаменитая из которых называется "Liber Abaci". Благодаря этой книге Европа узнала индо-арабскую систему чисел, которая позднее вытеснила традиционные для того времени римские числа. Работы Фибоначчи имели огромное значение для последующего развития математики, физики, астрономии и техники. В "Liber Abaci" Фибоначчи приводит свою последовательность чисел как решение математической задачи - нахождение формулы размножения кроликов. Числовая последовательность такова: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 (далее до бесконечности). Последовательность Фибоначчи имеет весьма любопытные особенности, не последняя из которых - почти постоянная взаимосвязь между числами.

Сумма любых двух соседних чисел равна следующему числу в последовательности. Например: 3 + 5 = 8; 5 + 8 = 13 и т.д.

Отношение любого числа последовательности к следующему приближается к 0,618 (после первых четырех чисел). Например: 1: 1 = 1; 1: 2 = 0,5; 2: 3 = 0,67; 3: 5 = 0,6; 5: 8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619 и т.д. Обратите внимание, как значение соотношений колеблются вокруг величины 0,618, причем размах флуктуаций постепенно сужается; а также на величины: 1,00; 0,5; 0,67.

Отношение любого числа к предыдущему приблизительно равно 1,618 (величина обратная 0,618). Например: 13: 8 = 1,625; 21: 13 = 1,615; 34: 21 = 1,619. Чем выше числа, тем более они приближаются к величине 0,618 и 1,618.

Отношение любого числа к следующему за ним через одно приближается к 0,382, а к предшествующему через одно - 2,618. Например: 13: 34 = 0,382; 34: 13 = 2,615.

Последовательность Фибоначчи содержит и другие любопытные соотношения, или коэффициент, но те, которые мы только что привели - самые важные и известные. Как мы уже подчеркивали выше, на самом деле Фибоначчи не является первооткрывателем своей последовательности. Дело в том, что коэффициент 1,618 или 0,618 был известен еще древнегреческим и древнеегипетским математикам, которые называли его "золотым коэффициентом" или "золотым сечением". Его следы мы находим в музыке, изобразительном искусстве, архитектуре и биологии. Греки использовали принцип "золотого сечения" при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Свойства "золотого коэффициента" были хорошо известны Пифагору, Платону и Леонардо да Винчи.



Поскольку из трех импульсных волн растягивается только одна, две остальные равны по протяженности и времени завершения. Если растягивается пятая волна, волны 1 и 3 должны быть почти равны. При растяжении третьей волны более или менее равными окажутся волны 1 и 5.

Минимальным ориентиром вершины волны 3 будет точка, координаты которой получают, умножая длину волны 1 на 1,618 и, прибавляя произведение к показателю основания волны 2, то есть к значению, соответствующему самой нижней ее точке.

Верхняя точка волны 5 может быть установлена путем умножения длины волны 1 на 3,236 (это 2 х 1,618). Полученное произведение следует прибавить к значению вершины или основания волны 1. Соответственно, мы получим максимальный или минимальный ориентир.

Когда волны 1 и 3 равны, а волна 5, как ожидается, растянется, то ценовой ориентир может быть получен следующим образом. Во-первых, следует измерить расстояние от нижней точки волны 1 до вершины волны 3, и умножить его на 1,618. Полученное произведение, в свою очередь, прибавляют к значению самой нижней точки волны 4.

При коррекции (в случае нормальной зигзагообразной коррекции типа 5-3-5) волна С часто достигает длины волны А.

Возможную длину волны С можно также измерить, умножив 0,618 на длину волны А, и вычтя полученное произведение из значения основания волны А.

В случае плоской коррекции по типу 3-3-5, где волна В достигает или даже перекрывает уровень вершины волны А, волна С будет примерно равна 1,618 длины волны А.

В симметричном треугольнике отношение каждой последующей волны к предыдущей примерно равно 0,618.

ЗАКЛЮЧЕНИЕ

Полный цикл бычьего рынка состоит из 8 волн: 5 волн роста, за которыми следуют 3 волны падения.

Тенденция подразделяется на 5 волн в направлении следующей в иерархии, более продолжительной тенденции.

Коррекция всегда состоит из трех волн.

Простые коррекции бывают двух типов: зигзаги 5-3-5 и плоские волны 3-3-5.

Треугольники, как правило, образуются на четвертых волнах (эта модель всегда предшествует последней волне). Треугольник может также быть корректирующей волной В.

Любая волна является частью более длинной и подразделяется на более короткие.

Иногда одна из импульсных волн растягивается. Остальные две должны оставаться равными по времени и протяженности.

Математической основой теории волн Элиота является последовательность Фибоначчи.

Количество волн, образующих тенденцию, совпадает с числами Фибоначчи.

Коэффициенты Фибоначчи и основанные на них отношения длины коррекции используются для определения ценовых ориентиров. Отношение длины коррекции к предыдущему движению рынка часто равняется 62%, 50% и 38%.

Правило чередования предупреждает, что не следует ждать одинакового проявления ценовой динамики два раза подряд.

Бычьи рынки не должны опускаться ниже основания предыдущей четвертой волны.

Волна 4 не должна перехлестываться с волной 1 (правда, это правило иногда нарушается на фьючерсных рынках).

Основными аспектами теории волн Элиота являются (в порядке значимости): форма волны, соотношение волн и время.

Лучшие результаты волновой анализ демонстрирует на массовых рынках, на рынке золота, FOREX.





Дата добавления: 2014-11-29; Просмотров: 2602; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.