КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гидравлические баки и теплообменники 2 страница
поршневые, плунжерные, диафрагмовые, шестеренчатые, лопастные, винтовые и ротационно-поршневые. Эти насосы являются обратимыми: они могут применяться в гидроприводах как насосы для преобразования механической энергии двигателя в гидравлическую или же для превращения гидравлической энергии насоса в механическую, то есть использоваться как гидродвигатели. В поршневом насосе вытеснителем является поршень, в шестеренном – зуб шестерни; в пластинчатом – лопатка; в винтовом – поверхность винта. К насосам, применяемым в гидроприводах, предъявляют особые требования. Насос должен иметь высокий КПД, обладать достаточной долговечностью и надежностью в процессе эксплуатации. Регулирование производительности насоса должно осуществляться простыми средствами, непрерывно в процессе работы и с минимальными потерями энергии. Кроме того, желательно, чтобы насос был обратимым, то есть мог бы использоваться в качестве гидромотора. По характеру процесса вытеснения жидкости объемные насосы делятся на поршневые и роторные. Поршневыми называются насосы, в которых вытеснение жидкости из рабочих камер производится в результате только прямолинейного возвратно-поступательного или возвратно-поворотного движения вытеснителей относительно этих камер. По виду движения ведущего звена поршневые насосы разделяются на прямодействующие и вальные. В прямодействующем насосе ведущее звено совершает прямолинейное возвратно-поступательное движение, в вальном – вращательное движение.
Роторными называются насосы, в которых вытеснение жидкости из камер производится в результате вращательного или сложного движения вытеснителей. Классификация роторных насосов приведена на рисунке 3.1. В гидроприводах машин лесной промышленности применяются три типа насосов – шестеренные, лопастные и аксиально-поршневые. Лопастные насосы в машинах лесной промышленности используются в приводах гидроусилителей рулевых механизмов. Шестеренные насосы получили большее распространение в гидросистемах лесовозных автомобилей, самосвалах, дорожных и строительных машинах, лесозаготовительных и складских машинах, в приводах по обработке и переработке древесины. Аксиально-поршневые насосы используют в системах лесозаготовительных машин, где рабочее давление составляет от 12 до 25 МПа.
Рисунок 3.1 – Классификация роторных насосов
3.2 Шестеренные насосы
Шестеренные насосы выполняются с внешним и внутренним зацеплением шестерен. Наибольшее распространение имеют насосы с внешним зацеплением шестерен; такие насосы могут быть одно- и двухсекционные. Схема шестеренного насоса представлена на рисунке 3.2. При вращении ведущей 1 и ведомой 2 шестерни рабочая жидкость из
всасывающей камеры А в полостях впадин зубьев переносится в нагнетательную камеру В.
Рисунок 3.2 – Схема шестеренного насоса Производительность шестеренного насоса может быть определена по формуле D2 Q = 2π Н bnη k z V
, (3.1)
где DН– диаметр начальной окружности шестерни; при одинаковых шестернях DНравен расстоянию между центрами шестерен; z – число зубьев; b – ширина зуба; n – частота вращения; hV– объемный КПД; к – поправочный коэффициент, равный» 1,1.
В таблице 3.1 приведены основные характеристики некоторых типовых шестеренных насосов.
Таблица 3.1 – Основные параметры шестеренных насосов
Окончание таблицы 3.1
Примечания: 1. Приведенные параметры являются номинальными. 2. Насосы НШ и НМШ предназначены для нагнетания рабочей жидкости в гидравлические системы тракторов, подъемных землеройных, дорожностроительных,
транспортных и других сельскохозяйственных машин. В их числе насосы НШ10-10-2, НШ32-10-2 и НШ32-32-2 двухсекционные; насосы НМШ50 и НМШ125 - двухкамерные. 3. Насосы Ш предназначены для подачи масла, нефти, мазута, дизельного топлива; насосы ШГ – для подачи парафина, нефти, мазута температурой менее 100 0 С и n до 6×10-4м2/с; насосы ШФ предназначены для подачи масла, нефти, дизельного топлива температурой до 900 С. 4. Насосы Г11-2 и БГ11-2 используются в системе станочных гидроприводов.
3.3 Пластинчатые насосы
Пластинчатые насосы, применяемые в гидроприводах, разделяют на насосы одно-, двух- и многократного действия. В насосах однократного действия жидкость вытесняется из рабочей камеры один раз за один оборот ротора, в насосах двукратного действия – 2 раза, а в насосах многократного действия – несколько раз [3]. На рисунке 3.3 приведена простейшая схема пластинчатого насоса однократного действия.
Рисунок 3.3 – Схема пластинчатого насоса однократного действия: 1 – ротор; 2 – приводной вал; 3 – пластины; 4 – статор; 5 – распределительный диск; 6, 8 – окна; 7 – гидролиния всасывания; 9 – гидролиния нагнетания; 10 – уплотнительные перемычки
Схема насоса однократного действия приведена на рисунке 3.3. Насос состоит из ротора 1, установленного на приводном валу 2, опоры которого размещены в корпусе насоса. В роторе имеются радиальные или расположенные под углом к радиусу пазы, в которые вставлены пластины 3. Статор 4 по отношению к ротору расположен с эксцентриситетом е. К торцам статора и ротора с малым зазором (0,02 ÷ 0,03 мм) прилегают торцевые распределительные диски 5 с серповидными окнами. Окно 6 каналами в корпусе насоса соединено с гидролинией всасывания 7, а окно 8 – с напорной гидролинией 9. Между окнами имеются уплотнительные перемычки 10, обеспечивающие герметизацию зон всасывания и нагнетания. Центральный угол ε, образованный этими перемычками, больше угла β между двумя соседними пластинами. При вращении ротора пластины под действием центробежной силы, пружин или под давлением жидкости, подводимой под их торцы, выдвигаются из пазов и прижимаются к внутренней поверхности статора. Благодаря эксцентриситету объем рабочих камер вначале увеличивается – происходит всасывание, а затем уменьшается – происходит нагнетание. Жидкость из линии всасывания через окна распределительных дисков вначале поступает в рабочие камеры, а затем через другие окна вытесняется из них в напорную линию. При изменении эксцентриситета е изменяется подача насоса. Если е = 0 (ротор и статор расположены соосно), пластины не будут совершать возвратно-поступательных движений, объем рабочих камер не будет изменяться, и, следовательно, подача насоса будет равна нулю. При перемене эксцентриситета с + е на – е изменяется направление потока рабочей жидкости (линия 7 становится нагнетательной, а линия 9 – всасывающей). Таким образом, пластинчатые насосы однократного действия в принципе регулируемые и реверсируемые. Подачу пластинчатого насоса однократного действия определяют по формуле
Q = η ⎡2π(r - e) - δz⎤b× 2en, (3.2) О ⎢⎣ cosα ⎥⎦
где hО – объемный КПД, принимаемый в пределах 0,75 ¸ 0,98; r – радиус внутренней поверхности статора; e – величина эксцентриситета; δ – толщина одной пластины; z – число пластин; a – угол наклона одной пластины (обычно α = 0 ÷ 15 °);
b – ширина пластин в осевом направлении; n – частота вращения.
В насосах двойного действия (рисунок 3.4) ротор 1 и 2 статор сосны. Эти насосы имеют по две симметрично расположенные полости всасывания и полости нагнетания. Такое расположение зон уравновешивает силы, действующие со стороны рабочей жидкости, разгружает приводной вал 2, который будет нагружен только крутящим моментом. Для большей уравновешенности число пластин 3 в насосах двойного действия принимается четным. Торцевые распределительные диски 5 имеют четыре окна. Два окна 6 каналами в корпусе насоса соединяются с гидролинией всасывания 7, другие два 8 – с напорной гидролинией 9. Так же как и в насосах однократного действия, между окнами имеются уплотнительные перемычки 10. Для герметизации зон всасывания и нагнетания должно быть соблюдено условие, при котором ε > β [3].
Рисунок 3.4 – Схема пластинчатого насоса двойного действия: 1 – ротор; 2 – приводной вал; 3 – пластины; 4 – статор; 5 – распределительный диск; 6, 8 – окна; 7 – гидролиния всасывания; 9 – гидролиния нагнетания; 10 – уплотнительные перемычки
Профиль внутренней поверхности статора выполнен из дуг радиусами R1и R2. Пазы для пластин в роторе могут иметь радиальное расположение под углом 7 ÷ 15 ° к радиусу, что уменьшает трение и исключает заклинивание пластин. Насосы с радиальным расположением пластин могут быть реверсивными.
Подачу пластинчатого насоса двойного действия определяют по формуле
Q = 2η ⎡2π(R 2 - R 2)- (R1 - R2)δz⎤bn, (3.3) О ⎢⎣ 1 2 cosα ⎥⎦
где R1и R2– соответственно большая и малая полуоси внутренней поверхности статора.
Регулирование подачи пластинчатого насоса однократного действия осуществляется за счет изменения величины и знака эксцентриситета. Число пластин z для наиболее равномерной подачи принимается кратным четырем, чаще всего z = 12. Возможность регулирования подачи в насосе двукратного действия исключается. В таблице 3.2 приведены технические характеристики пластинчатых насосов типа Г11 и БГ11 [14].
Таблица 3.2 – Технические характеристики пластинчатых насосов типа Г11 и БГ11.
В таблице 3.3 приведены технические характеристики пластинчатых нерегулируемых насосов типа Г12 [14].
Таблица 3.3 – Технические характеристики пластинчатых нерегулируемых насосов типа Г12 [14].
В таблице 3.4 приведены технические характеристики пластинчатых нерегулируемых насосов типа БГ12 [14].
Таблица 3.4 – Технические характеристики пластинчатых нерегулируемых насосов типа БГ12.
3.4 Роторно-поршневые насосы
Роторно-поршневыми называются насосы, в которых вытеснители имеют форму поршней (плунжеров), а рабочие камеры ограничиваются вытеснителями в цилиндрических полостях ротора. Различают радиальные и аксиальные роторно-поршневые насосы. В радиальных насосах рабочие камеры расположены радиально по отношению к оси ротора. Если ось вращения ротора параллельна осям рабочих камер, насос называется аксиально-поршневым
3.4.1 Радиальные роторно-поршневые насосы
Радиально-поршневые гидромашины применяют при сравнительно высоких давлениях (10 МПа и выше). По принципу действия радиально- поршневые гидромашины делятся на одно-, двух- и многократного действия. В машинах однократного действия за один оборот ротора поршни совершают одно возвратно-поступательное движение. Схема радиально-поршневого насоса однократного действия приведена на рисунке 3.5.
Рисунок 3.5 – Схема радиально-поршневого насоса однократного действия: 1 – ротор; 2 – ось; 3 – всасывающий канал; 4 – нагнетательный канал; 5 – окна; 6 – цилиндры; 7 – статор; 8 – муфта; 9 – поршни
Рабочими камерами в насосе являются радиально расположенные цилиндры, а вытеснителями – поршни. Ротор (блок цилиндров) 1 на
скользящей посадке установлен на ось 2, которая имеет два канала 3 и 4 (один соединен с гидролинией всасывания, другой – с напорной гидролинией). Каналы имеют окна 5, которыми они могут соединяться с цилиндрами 6. Статор 7 по отношению к ротору располагается с эксцентриситетом. Ротор вращается от приводного вала через муфту 8. При вращении ротора в направлении, указанном на рисунке 3.5 стрелкой, поршни 9 вначале выдвигаются из цилиндров (происходит всасывание), а затем вдвигаются (нагнетание). Соответственно рабочая жидкость вначале заполняет цилиндры, а затем поршнями вытесняется оттуда в канал 4 и далее в напорную линию гидросистемы. Поршни выдвигаются и прижимаются к статору центробежной силой или принудительно (пружиной, давлением рабочей жидкости или иным путем). Радиально-поршневые насосы могут быть регулируемыми и нерегулируемыми. Регулирование подачи, а также реверс осуществляются изменением величины и знака эксцентриситета. Увеличение подачи достигается за счет увеличения числа рядов цилиндров (многорядные насосы). Средняя подача нерегулируемого и регулируемого радиально- поршневого насоса определяется соответственно по формулам (3.4), (3.5)
Q = ηО πd2ezmi/2; (3.4)
eziuen/2, (3.5)
где d – диаметр поршня; e – эксцентриситет; величина которого находится в пределах 3 ¸ 10 мм; ue= e/emax– параметр регулирования; m – число ходов поршня за один оборот вала насоса; i – число рядов поршня.
Промышленность выпускает регулируемые насосы типа НП, НПД и нерегулируемые – типа Н с давлением до 50 МПа. Радиально-поршневые насосы имеют четыре модификации по управлению: - НРР – насосы с ручным управлением нереверсивные; - НРРШ – насосы с ручным управлением, нереверсивные, с встроенным шестеренным насосом для питания вспомогательных механизмов гидросистемы;
- НРС и 2НРС – насосы со следящим гидравлическим управлением (НРС – нереверсивные; 2НРС – реверсивные); - НРМ и НР4М – насосы с электрогидравлическим механизмом управления на две и четыре подачи (реверсивные); - НРД – насосы с управлением по давлению (нереверсивные).
В качестве примера рассмотрим расшифровку насоса 2НРС 250Д/20: цифра 2 – реверсивный, радиально-поршневой со следящим гидравлическим управлением; 250 – величина рабочего объема в см3; Д – модернизированный; 20 – номинальное давление в МПа.
В таблице 3.5 приведены основные параметры радиально-поршневых регулируемых насосов типа НР.
Таблица 3.5 – Основные параметры радиально-поршневых регулируемых насосов
В таблице 3.6 приведены основные параметры радиально-поршневых нерегулируемых насосов типа Н.
Таблица 3.6 – Основные параметры радиально-поршневых нерегулируемых насосов
Дата добавления: 2014-12-07; Просмотров: 1237; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |