КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Выравнивание шейного сегмента позвоночника 1 страница
Пример
Дана матрица решений , размером , результатами которой есть убытки. Осуществить выбор наилучшего варианта решения с помощью критериев: минимаксного, Байєса-Лапласа и Сэвиджа. Известно, что вероятности появления внешних состояний , j=1,...,8 имеют следующие значения: .
.
Решение. Сначала будем искать оптимальный вариант решения с помощью ММ-критерия, для этого матрицу решений дополняем столбцом - наименьших результатов каждой строки, то есть
.
Теперь будем выбирать варианты , в строках которых стоит наибольшее значение этого столбца, то есть . Этот результат отвечает оптимальному варианту . Применим критерий Байєса-Лапласа для поиска оптимального варианта. Найдем математические ожидания каждой строки и запишем их в дополнительный столбец :
=
Далее применим оценочную функцию (8) и найдем оптимальный вариант. Поскольку , то такой результат отвечает оптимальному варианту . Для использования критерия Сэвиджа построим матрицу разностей в соответствии с формулой (9)
.
Для этой матрицы построим дополнительный столбец соответственно формуле (10) и с помощью оценивающей функции найдем оптимальный вариант решения .
.
Таким образом, используя классические критерии, мы получили ряд оптимальных вариантов . Для выбора наилучшего из них необходимы дополнительные условия. Порядок выполнения работы. Дана матрица решений, размером 8´8 результатами которой есть или прибыль или убытки осуществить выбор оптимального варианта решения с помощью критериев: 1. Минимаксного; 2. Байєса-Лапласа; 3. Сэвиджа. Матрица решений и распределение вероятностей появления внешних состояний выбираются по номеру в списке группы. Варианты матрицы решений находятся в таблице 1. Распределение вероятностей - появления внешних состояний , j=1,...,n подчиняется значением, которые указаны в таблицы 2 по вариантам.
Табл. 1. Варианты матрицы решений:
Дата добавления: 2014-12-07; Просмотров: 881; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |