КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принципы симметрии, законы сохранения
Симметрия и противоположное ей свойство природы – асимметрия (или неполная симметрия) являются фундаментальными понятиями естествознания, т.к. они, в известной мере, отражают степень упорядоченности систем, вследствие чего, помогают восприятию порядка в хаотической Вселенной и позволяют из разрозненных фрагментов знания получить целостную картину мира.
Симметрия: - предполагает неизменность (инвариантность) объекта или свойств объекта по отношению к каким-либо преобразованиям, операциям, выполненных над объектом (простейший пример: если куб повернуть на 90°, то он будет выглядеть точно так же, как и до поворота) - понятие симметрии, как неизменности свойств объекта по отношению к операциям, выполненных над объектом, можно применить к материальным объектам, физическим законам и математическим формулам. В природе не все объекты обладают симметрией, но не бывает и полного отсутствия симметрии (асимметрия – такое состояние, при котором симметрия отсутствует) Нарушенные (неполные) симметрии, примеры: - «живым» молекулам, в отличие от «неживых» молекул, присуща так называемая хиральность (хиральность – понятие, характеризующее свойство объекта быть несовместимым со своим отображением в идеальном плоском зеркале). Так ориентация ДНК – спираль, всегда правая - у высших биологических объектов, в отличие от низших, имеет место асимметрия – разделение полов, где каждый пол вносит в процесс самовоспроизведения, свойственную только ему, генетическую информацию - асимметрия на уровне элементарных частиц – это преобладание в нашей Вселенной частиц над античастицами
Эволюция есть цепочка нарушений симметрии. Это обусловлено: - наибольшей симметрией обладают равновесные хаотические состояния системы - при переходе материи на более высокий уровень организации, упорядоченности – снижается энтропия (как мера хаотичности), а тем самым и симметрия
Можно считать, что возникновение жизни в целом связано со спонтанным нарушением, имевшейся до того в природе, зеркальной симметрии (под действием радиации, температуры и т.п.) и нашло свое отражение в генах живых организмов. По мере упорядочения живых организмов (живых систем), их усложнения в ходе развития жизни (эволюции), асимметрия все больше и больше превалирует над симметрией, вытесняя ее из биологических и физиологических процессов.
Простейшие симметрии: - однородность (одинаковые свойства во всех точках) - изотропность (одинаковые свойства во всех направлениях) Симметрия пространства и времени. Пространство и время обладают тремя фундаментальными свойствами – тремя видами симметрии, связанными с однородностью времени, с однородностью и изотропностью пространства. Все, ниже описанные представления, справедливы лишь в предположении, что пространство и время образуют непрерывные континуумы, т.е. не дискретны (не состоят из кусков): - свойство, называемое непрерывностью пространства, заключается в том, что между двумя различными точками пространства, как бы близко они ни были, всегда есть третья - свойство, называемое непрерывностью времени, определяется тем, что между двумя моментами времени, как бы близко они ни были расположены, всегда можно выделить третий Однородность пространства – характеризует симметрию по отношению к переходу системы, как целого, в пространстве. Это собственно означает: - любые точки пространства равноценны, т.е. перенос любого объекта в пространстве не влияет на процессы, происходящие с этим объектом (например, свойства атомов на Земле и других небесных объектах одни и те же) - возможность произвольного выбора начала отсчета пространственных координат Изотропность пространства – характеризует симметрию по отношению поворота системы как целого в пространстве. Это означает: - любые направления в пространстве равноценны, т.е. в повернутой установке, лаборатории и т.п., все процессы протекают так же, как и до поворота - возможность произвольного выбора направлений системы пространственных координат Однородность времени – характеризует симметрию, относительно произвольного сдвига во времени. Это свойство означает: - любой физический процесс протекает одинаковым образом, независимо от того, когда он начался, т.е. позволяет сравнивать результаты аналогичных опытов, проведенных в разное время - возможность выбора любого момента времени за начальный. Двойственность свойств вышеуказанных симметрий связана с тем, что их можно рассматривать с двух точек зрения – как изменения положения самой системы (в пространстве и времени) и как изменения положения наблюдателя (и связанной с ним системы отсчета)
Законы сохранения: - это физические законы, согласно которым числовые значения некоторых физических величин, характеризующих состояние системы, в определенных процессах не изменяются - эти законы играют роль принципа запрета: любой процесс, при котором нарушается хотя бы один из законов сохранения, невозможен
Закон сохранения импульса системы тел (частиц): в замкнутой системе (т.е. результирующая всех сил равна нулю) сумма импульсов системы остается постоянной Закон сохранения момента импульса системы тел (частиц): в замкнутой системе сумма моментов импульсов системы остается постоянной (если к телам этой системы не приложены моменты внешних сил) Законы сохранения (и превращения) энергии: суммарная энергия в замкнутой (изолированной) системе не изменяется (остается постоянной)
В 1918 г. Амалия Эмми Нетер установила связь между симметриями и законами сохранения. Теорема Нетер: каждому виду симметрии должен соответствовать определенный закон сохранения: - следствием однородности пространства является закон сохранения импульса - следствием изотропности пространства является законсохранения момента импульса - следствием однородности времени является закон сохранения энергии.
Дата добавления: 2014-12-07; Просмотров: 1627; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |