Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электроаэрозольные технологии




 

Методы зарядки частиц

 

В настоящее время используется три основных метода зарядки частиц:

1 – ионная

2 – индукционная

3 – статическая электризация

 

Ионная зарядка заключается в том, что движущиеся ионы газового разряда осаждаются на поверхности частичек и отделиться не могут из-за возникающего потенциального барьера. Происходит накопление ионов на поверхности частицы и она приобретает заряд равный сумме зарядов ионов (см. рис.). Источником ионов является униполярный коронный разряд (иногда поверхностный).

Рис.

 

 

Индукционная зарядка. Осуществляется помощью источника высокого напряжения (см. рис.).

Рис.

а – частица поляризуется в эл. поле.

б – контактирует с поверхностью электрода в результате чего поляризационный заряд нейтрализуется

в – частица преобретает избыточный заряд и отталкивается от электрода.

 

Статическая электризация осуществляется путем контакта и последующего разделения тел, обладающими различными физическими и химическими свойствами. Это происходит в результате трения частиц друг о друга или о поверхность. Контактирующие тела приобретают заряды разных знаков. Отличительной особенностью является то, что не требуется наличие внешнего электрического поля. При статической электризации для 400 видов веществ соблюдается правило Коэна: “При статической электризации вещество с большой приобретает положительный знак”.

Перемещение заряженных частиц в электрическом поле

При движении заряженной частицы в электрическом поле она подчиняется второму закону Ньютона:

,

где - масса частицы;

– сила тяжести;

– сила со стороны электрического поля;

- сила, обусловленная неоднородностью электрического поля (если поле однородное, то этой силы нет);

– радиус физической частицы;

–диэлектрическая проницаемость вещества.

–сила сопротивления перемещению частиц со стороны среды.

Расчет этой силы представляет наиболее сложную задачу. Были выполнены расчеты сил и скорости для различных значений напряженности

Рис.

 

При наблюдается минимальная скорость движения частиц.

Электрофильтры

 

Электрофильтры представляют собой один из наиболее совершенных способов очистки газов в самых различных условиях.

 

Применяются в отраслях:

1) цементной;

2) химической;

3) металлургической;

4) на тепловых станциях.

 

Электрофильтры бывают 2 типов:

1) трубчатые;

2) пластинчатые.

 

Конструкция трубчатого электрофильтра

 

Рис.

1 – высоковольтный электрод (провод);2 – заземленный электрод (осадительный);3 – неочищенный газ;4 – очищенный газ.

 

Конструкция пластинчатого электрофильтра

Рис.

h – длина газоразрядного промежутка.

 

При подаче высокого напряжения UВН на высоковольтные электроды (провода), на них возникает коронный разряд (униполярный). В поле коронного разряда частички заряжаются и под действием сил электрического поля движутся к осадительным электродам и осаждаются на них. Слой пыли периодически удаляется встряхиванием электродов.

Важнейшая характеристика – степень очистки.

– концентрации пыли на выходе и на входе электрофильтра.

Процесс осаждения пыли описывается дифференциальными уравнениями. В результате его решения получено выражение:

– скорость движения газа внутри электрофильтра.

– скорость перемещения частичек в электрическом поле.

– характеризует неоднородность концентрации пыли.

При работе электрофильтра необходимо обеспечивать его функционирование при максимальном напряжении. η ↑. По этой причине используется напряжение отрицательной полярности. При отрицательной полярности пробивное напряжение промежутка больше и рабочее напряжение может иметь наибольшую величину.

Сильное влияние на работу электрофильтров оказывает удельная проводимость частиц. Лучше всего улавливаются частички с удельной проводимостью

 

Электроокраска.

 

Схема технологического процесса

 

 

Рис.

Р - распылитель; Э - в/в коронирующий электрод;К - поток заряженных капелек краски; ОИ - обрабатываемое изделие; М – металлическое основание,подложка.

Р - обеспечивает распыление краски (образуются капельки краски), эти капельки попадают в область коронного разряда Э и приобретают определённый заряд. Между Р и Э и заземлённой подложкой М возникает электрическое поле. Заряженные К движутся по силовым линиям поля и оседают на поверхности ОИ. Расстояние между Р и ОИ 200 300 мм.

Применяют две разновидности электроокраски:

1) Электростатическая.

2) Окраска с механическим распылением.

1. Эл. поле применяется для распыления краски, для зарядки и перемещения капель краски. Такая схема применяется редко.

2. Распыление краски осуществляется не электрическими способами:

– центробежное;

– безвоздушное дробление краски высоким давлением

– пневматическое.

Электрическое поле в этом случае применяется лишь для зарядки и перемещения капель краски.

 

Плюсы электроокраски:

1) Резко уменьшаются потери материала (при обычной пневмоокраске потери 50%, а при эл. окраске 10 20%).

2) Покрытие получается более тлотным, прочным и равномерным.

На процесс электороокраски влияют следующие факторы:

– Коэффициент поверхностного натяжения: (4 5)·105 Н/см

– Вязкость краски: 0.07 Па·с

– Удельная проводимость краски:γ=10-5 10-6 1/Ом·м

 

Эл. сепарация порошковых материалов.

 

Применяется для разделения смешанных разнородных порошковых материалов.

В настоящее время применяются следующие виды эл. сепараций:

1) Разделение, основанное на различии в удельной проводимости. и диэл. ведут себя различным образом на в/в электроде. Первые быстро заряжаются и отталкиваются от в/в, а у вторых этот процесс занимает больше времени.

2) Разделение материалов основано на различии в электризации трением. При трении частицы 2х материалов смеси о поверхность 3го эти частицы приобретают заряды разные по величине, а иногда и по знаку. Затем смесь подаётся в эл. статическое поле и оседает либо на разных электродах, либо на различных частях электрода. таким образом разделяются частички.

3) Разделение, основанное на использовании пироэлектрического эффекта – когда при нагревании смеси разнородных материалов, частицы первого вида приобретают положительный заряд, а другого – отрицательный заряд. При распылении они оседают на разных электродах.

4) Разделение, основанное на различии в диэлектрической проницаемости материалов этих частиц. В этом случае используются силы, действующие на незаряженную диэлектрическую частицу в неоднородном поле. Если Ематериала Есреды, то частицы втягиваются в область с наибольшей напряжённостью поля. Если Ематериала Есреды, частицы выталкиваются из этой области

5) Разделение, основанное на различии массы частиц. Частицы разного размера и массы подаются в промежуток между коронирующими и осадительными электродами. Частицы приобретают заряд, движутся в эл. поле и оседают на различных участках осадительного электрода в зависимости от массы и размеров.

Разделение, основанное на различии в удельной проводимости.

 

В этом случае применяют барабанный (пластинчатый сепаратор), конструкция которого схематично представлена следующем рис.

 

 

Рис.

1 - питатель порошковой смеси; из него подаётся порошковая смесь;

2 - наклонная металлическая плоскость с графитизированной поверхностью (для улучшения электрического контакта);

3 – вращающийся металлический барабан;

4 - коронирующие электроды (провода);

5 и 6 - приёмники частиц с большой и малой проводимостью соответственно;

7 - разделительная перегородка;

8 - дополнительный электрод (в/в) служит для увеличения эффективности работы барабана 3.

 

Принцип работы:

Частицы порошковой смеси скользят по поверхности 2 и затем попадают на барабан 3. Под действием эл. поля коронирующих электродов 4 частицы приобретают заряд, причём проводящие частицы заряжаются быстрее, они отталкиваются от поверхности 3, имеющей такой же по знаку заряд, и попадают в отсек 5. Частицы с малой проводимостью дольше удерживаются на поверхности 3, но всё равно заряжаются и попадают в 6.

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 722; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.046 сек.