КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Применимость семантики к методологии эмпирических наук
Наряду с лингвистикой, другой важной областью возможных применений семантики является методология науки. Здесь этот термин используется в широком смысле — как охватывающий теорию науки в целом. Независимо от того, истолковывается ли наука лишь как система утверждений или как совокупность определенных утверждений и человеческих действий, изучение языка науки образует существенную часть методологического анализа науки. И мне представляется очевидным, что любая попытка устранить семантические понятия (такие, как понятия истины и обозначения) из этого анализа сделает его фрагментарным и неадекватным 35. Кроме того, для таких попыток в наши дни нет оснований, поскольку преодолены главные трудности, связанные с использованием семантических терминов. Семантика научного языка должна быть просто включена в методологию науки как ее часть. Я никоим образом не склонен навязывать методологии, и в частности семантике — теоретической или дескриптивной, — задачу прояснения значений всех научных терминов. Эта задача стоит перед теми науками, в которых используются термины, и она действительно решается ими (точно так же, как, например, задача прояснения значения термина «истинно» стоит перед семантикой и решается ею). Однако могут существовать определенные специальные проблемы такого рода, при решении которых методологический подход желателен или даже необходим (может быть, хорошим примером здесь будет вопрос о понятии причинности). В методологическом анализе таких проблем семантические понятия способны играть существенную роль. Таким образом, семантика может оказывать влияние практически на любую науку. Встает вопрос, может ли семантика оказаться полезной при решении общих и, так сказать, классических проблем методологии. Я хотел бы здесь несколько подробнее обсудить специальный, хотя и очень важный, аспект этого вопроса. Одна из основных проблем методологии эмпирических наук состоит в установлении условий, при которых эмпирическая теория или гипотеза должны считаться приемлемыми. Это понятие приемлемости должно быть релятивизировано относительно той или иной стадии развития науки (или данной совокупности знания). Иными словами, его можно рассматривать как снабженное временным коэффициентом, ибо теория, приемлемая сегодня, завтра может стать неприемлемой в результате новых научных открытий. A priori кажется вполне вероятным, что приемлемость теории как-то зависит от истинности ее предложений, следовательно, методолог в своих (до сих пор безуспешных) попытках уточнить понятие 35 Эта тенденция очевидна в ранних работах Карнапа (см., например: Сатир R. (1937), в частности, часть V) и в сочинениях других членов Венского кружка. См. об этом работы: Kokoszynska M. (1936a), WeinbergJ. (1942). приемлемости может ожидать некоторой помощи со стороны семантической теории истины. Поэтому мы ставим вопрос: существуют ли какие-либо постулаты, которые можно наложить на приемлемые теории и которые содержат понятие истины? В частности, мы спрашиваем, разумен ли следующий постулат: «Приемлемая теория не может содержать (или иметь в качестве следствий) каких-либо ложных предложений». Ответ на последний вопрос, очевидно, будет отрицательным. Прежде всего, исторический опыт дает нам уверенность в том, что каждая эмпирическая теория, принимаемая сегодня, рано или поздно будет отвергнута и заменена другой теорией. Весьма вероятно также, что новая теория будет несовместима со старой, т. е. из нее будет следовать предложение, противоречащее одному из предложений старой теории. Следовательно, по крайней мере одна из этих двух теорий должна включать в себя ложные предложения, хотя каждая из них принималась в определенное время. Во-вторых, обсуждаемый постулат едва ли может быть выполнен на практике, так как мы не знаем и вряд ли когда-нибудь найдем критерий истины, который позволит нам показать, что ни одно предложение некоторой эмпирической теории не является ложным. Обсуждаемый постулат в лучшем случае можно рассматривать как выражение некоторого идеального предела для последовательности все более адекватных теорий в данной области исследования, однако едва ли ему можно придать сколько-нибудь точное значение. Тем не менее, мне представляется, что все-таки существует важный постулат, который можно наложить на приемлемые эмпирические теории и который содержит понятие истины. Он тесно связан с обсужденным выше, но существенно слабее его. Памятуя о том, что понятие приемлемости снабжено временным коэффициентом, мы можем придать этому постулату следующую форму: «Как только нам удается показать, что некоторая эмпирическая теория содержит (или влечет) ложные предложения, ее нельзя больше считать приемлемой». В поддержку этого постулата я хотел бы высказать следующие замечания. Думаю, каждый согласится с тем, что одной из причин, -заставляющих нас отвергнуть эмпирическую теорию, является доказательство ее противоречивости: теория становится неприемлемой, если нам удается вывести из нее два противоречащих друг друга предложения. Теперь мы можем спросить, по каким же мотивам мы отбрасываем теорию на таком основании? Те, кто знаком с современной логикой, склонны отвечать на этот вопрос следующим образом: хорошо известный логический закон говорит, что если из теории можно вывести два противоречащих друг другу предложения, то из нее можно вывести любое предложение, поэтому такая теория тривиальна и не представляет научного интереса. У меня есть некоторые сомнения относительно того, дает ли этот ответ адекватный анализ ситуации. Думаю, что люди, незнакомые с современной логикой, столь же мало склонны принимать противоречивую теорию, как и те, кому она хорошо известна. По-видимому, это верно даже для тех, кто считает логический закон, на который опирается аргументация, в высшей степени спорным и почти парадоксальным. Я не думаю, что наше отношение к противоречивым теориям изменится, даже если по некоторым причинам мы решим так ослабить нашу систему логики, что вывод любого предложения из двух противоречащих друг другу предложений окажется невозможным. Мне кажется, что реальная причина нашего отношения заключается в ином: мы знаем (пусть лишь интуитивно), что противоречивая теория должна содержать ложные предложения, а мы не хотим считать приемлемой теорию, содержащую такие предложения. Имеются различные методы установления того, что данная теория содержит ложные предложения. Некоторые из них опираются на чисто логические свойства обсуждаемой теории. Метод, рассмотренный только что (т. е. доказательство противоречивости), не является единственным методом этого типа, но считается наиболее простым и чаще всего используется на практике. С помощью определенных предположений относительно истины эмпирических предложений мы можем получить столь же эффективные методы, которые уже не носят чисто логического характера. Если мы решим принять общий постулат, сформулированный выше, то успех в применении любого из этих методов сделает теорию неприемлемой. 22. Применения семантики к дедуктивным наукам. Что касается применимости семантики к математическим наукам и их методологии, т. е. к мета-математике, то здесь мы находимся в гораздо более выгодном положении, чем в случае эмпирических наук. Нам уже не нужно выискивать причины, которые бы оправдали некоторые надежды на будущее (занимаясь, таким образом, какой-то пропагандой в защиту семантики), здесь мы можем указать на конкретные полученные результаты. Продолжают выражать сомнения, может ли понятие истинного предложения — в отличие от понятия доказуемого предложения — иметь какое-либо значение для математических дисциплин и играть какую-либо роль в методологическом анализе математики. Мне кажется, однако, что именно понятие истинного предложения образует наиболее важный вклад семантики в мета-математику. У нас уже имеется целый ряд интересных мета-математических результатов, полученных с помощью теории истины. Эти результаты относятся ко взаимоотношениям между понятиями истинности и доказуемости; устанавливают новые свойства второго понятия (которое, как известно, является одним из фундаментальных понятий мета-математики); и проливают некоторый дополнительный свет на важнейшие проблемы непротиворечивости и полноты. Наиболее интересные из этих результатов были кратко рассмотрены в разделе 12 36. Кроме того, с помощью методов семантики мы можем дать адекватные определения важным мета-математическим понятиям, которые до сих пор использовались лишь на интуитивном уровне, например понятию определимости или понятию модели системы аксиом. Это позволяет предпринять систематический анализ этих понятий. Исследования определимости, в частности, уже принесли некоторые интересные результаты и обещают еще больше в будущем 37. Мы рассматривали применение семантики только к метаматематике, но не к собственно математике. Однако это различие между математикой и мета-математикой не имеет большого значения. Мета-математика сама является дедуктивной дисциплиной и поэтому с определенной точки зрения образует ветвь математики. Хорошо из- 36 О других результатах, полученных с помощью теории истины, см.работы: GodelK. (1936), Tarski A. (1935), р. 401, Tarski A. (1939), p. 111. 37 Некоторый объект, например, число или множество чисел, называется определимым (в данном формализме), если существует пропозициональная функция, определяющая его (см. сноску 22). Таким образом, хотя термин «определимый» имеет мета-математический (семантический источник, он является чисто математическим по своему объему, так как выражает свойство (обозначает класс) математических объектов. Благодаря этому понятие определимости можно переопределить в чисто математических терминах, хотя и не в рамках той формализованной дисциплины, к которой это понятие относится. Однако фундаментальная идея определения не изменяется. См. к этому, а также для дальнейших библиографических ссылок, работу: Tarski Л. (1931). Различные другие результаты относительно определимости можно найти в литературе, например, в работе: Hilbert D., Bemays P. (1939), v. 1, pp. 354, 369, 456ff; Lindebaum A., Tarski A. (1936). Можно заметить, что термин «определимый» иногда употребляется в другом, мета-математическом (но несемантическом) смысле. Это происходит, например, в тех случаях, когда мы говорим, что некоторый термин определим в других терминах (на базе данной системы аксиом). Об определении модели системы аксиом см. работу: Tarski A. (1937). вестно, что благодаря формальному характеру дедуктивного метода результаты, полученные в одной дедуктивной дисциплине, автоматически могут быть распространены на любую другую дисциплину, в которой первая находит свою интерпретацию. Так, например, все мета-математические результаты можно интерпретировать как результаты теории чисел. И с практической точки зрения также не существует резкой границы между мета-математикой и собственно математикой, например исследование определимости можно включить в любую из этих областей. 23. Заключительные замечания. Это обсуждение мне хотелось бы завершить некоторыми общими и не вполне строгими замечаниями по поводу всей проблемы оценки научных достижений посредством их применимости. В этой связи я должен высказать некоторые сомнения. Будучи математиком (как и логиком и даже, может быть, философом), я имел возможность присутствовать на многочисленных дискуссиях среди специалистов в области математики, где проблема приложений стоит особенно остро, и обратил внимание на следующий феномен: если математик хочет принизить значение работы одного цз своих коллег, скажем А, то наиболее эффективный способ сделать это состоит в том, чтобы спросить, где может быть применен полученный результат? Прижатый к стенке человек в конце концов отыскивает исследования другого математика В и указывает на них.как на сферу применения своих собственных результатов. Если начать мучить В аналогичным вопросом, он сошлется на другого математика С. После нескольких попыток такого рода мы обнаруживаем, что вернулись к исследованиям А, и, таким образом, цепь замыкается. Говоря более серьезно, я не хочу отрицать, что ценность некоторой работы возрастает благодаря ее применениям в исследованиях других людей и в практике. Тем не менее, я убежден, что вредно для прогресса науки оценивать значение какого-либо исследования исключительно или главным образом в терминах его полезности или применимости. Из истории науки нам известно, что многие важные результаты и открытия ждали столетия, прежде чем нашли применение в какой-либо области. На мой взгляд, существуют также и другие важные факторы, которых нельзя не учитывать при оценке значимости научной работы. Мне кажется, существует особая сфера очень глубоких и сильных человеческих потребностей, связанных с научным исследованием, которые во многих отношениях аналогичны эстетическим и, возможно, религиозным потребностям. И я думаю, удовлетворение этих потребностей должно считаться важной задачей исследования. Поэтому я убежден в том, что вопрос о ценности любого ис- следования не может быть адекватно решен, если не принять во внимание того интеллектуального удовлетворения, которое испытывает тот, кто понимает результаты данного исследования и сохраняет их. Быть может, это выглядит непопулярным и устаревшим, но я не считаю, что научный результат, дающий нам лучшее понимание мира и делающий его в наших глазах более гармоничным, заслуживает меньшего уважения, чем, скажем, изобретение, которое снижает стоимость покрытия дорог или улучшает коммунальное водоснабжение. Ясно, что высказанные замечания становятся ненужными, если слово «применение» употребляется в очень широком и расплывчатом смысле. Возможно, не менее очевидно и то, что из этих общих замечаний ничего нельзя вывести относительно тех конкретных проблем, которые были предметом обсуждения данной статьи. И я действительно не знаю, приобретут или что-то потеряют семантические исследования благодаря введению того стандарта оценки, который я предложил. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ Aristotle (1908) Metaphysica. (Works, v. VIII.) English translation by W. D. Ross, Oxford. Camap R. (1937). Logical Syntax of Language. London and New York. Camap R. (1942). Introduction to Semantics. Cambridge. Godel K. (1931). Uber formal iinentscheidbare Satze der Principia Mathematica und verwandter Systeme, I. // Monatshefte fur Mathematik und Physik, v. XXXVIII, pp. 173-198. Godel K. (1936) Uber die Laenge von Beweisen // Ergerbnisse eines mathematischen Kolloquiums, v. VII, pp. 23—24. Gonseth F. (1938) Le Congres Descartes. Questions de Philosophie scientifique // Revue thomiste, v. XLIV, pp. 183—193. Grelling K., Nelson L. (1908) Bemerkungen zu den Paradoxien von Russel und Burali-Forti // Abhandlungen der Fries'schen Schule, v. II (new series), pp. 301-334. Hofstadter A. (1938) «On Semantic Problems» // The Journal of Philosophy, v. XXXV, pp. 225-232. HUbert D., Bemays P. (1934-1939) Gnindlagen der Mathematik. 2 vols. Berlin. Juhos B. von. (1937) The Truth of Empirical Statements // Analysis, v. IV, pp. 65-70. Kokoszynska M. (1936a) Uber den absoluten Wahrheitsbegriff und einige andere semantische Begriffe // Erkenntnis, v. VI, pp. 143—165. Kokoszynska M. (1936b) Syntax, Semantik und Wissenschaftslogik // Actes du Congres International de Philosophic Scientifique, v. Ill, Paris, pp. 9-14. Kotarbinski Т. (1929) Elementy teorji poznania, logiki formalnej i metodologji nauk. (Elements of Epistemology, Formal Logic, and the Methodology of Sciences, in Polish.) Lwow, 1929. Kotarbinski T. (1930) W sprawie pojecia prawdy. (Concerning the Concept of Truth. In Polish.) Przeglgd filozoficzny, v. XXXVII, pp. 85-91. Lindenbaum A. Tarski A. A. (1936) Uber die Beschraenktheit der Ausdrucksmittel deduktiver Theorien // Ergebnisse eines mathematischen Kolloquiums, v. VII, pp. 15—23. Nagel E. (1938) Review of Hofstadter (1938) // The Journal of Symbolic Logic, v. Ill, p. 90. Nagel E. (1942) Review of Carnap (1942) // The Journal of Philosophy, v. XXXIX, pp. 468-473. Ness A. (1938) «Truth» As Conceived by Those Who Are Not Professional Philosophers // Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, II. Hist.-Filos. Klasse, v. IV, Oslo. Neurath 0. (1935) Erster Internationaler Kongress fur Einheit der Wissenschaft in Paris 1935 // Erkennthis, v, V, pp. 377-406. Russell B. (1940) An Inquiry Into Meaning and Truth. New York. Scholz H. (1937) Review of Studia philosophica, v. I // Deutsche Liteta-turzeitung, v. LVIII, pp. 1914-1917. Tarski A. (1931) Sur les ensembles definissables de nombres reels. I // Fundamenta mathematicae, v. XVII, pp. 210—239. Tarski A. (1935) Der Wahrheitsbergriff in den formalisierten Sprachen. (German translation of a book in Polish, 1933.) // Studia philosophica, v. I, pp. 261-405. Tarski A. (1936) Grundlegung der wissenschaftlichen Semantik // Actes du Congres International de Philosophie Scientifique, v. Ill, Paris, pp. 1-8. Tarski A. (1937) Uber den Begriff der logischen Folgerung // Actes du Congres International de Philosophie Scientifique, v. VII, Paris, pp. 1—11. Tarski A. (1939) On Undecidable Statements in Enlarged Systems of Logic and the Concept of Truth // The Journal of Symbolic Logic, v. IV, pp. 105-112. Tarski A. (1941) Introduction to Logic. New York. WeinbergJ. (1942) Review of Studia philosophica, v. I // The Philosophical Review, v. XLVII, pp. 70-77.
Дата добавления: 2014-12-07; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |