КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры систем автоматического управления
Классификация систем автоматического управления Классификацию систем автоматического управления осуществляют в зависимости от признаков, в качестве которых могут быть принципы работы, алгоритмы функционирования, структуры систем, вид представления отдельных элементов, вид математических моделей, области применения и др. По виду алгоритмов функционирования системы автоматического управления делятся на системы стабилизации (V = const, поддерживается некоторое постоянное значение выхода Y, рис. 1.8), системы программного управления (вход V должен изменяться по заданной программе), следящие системы – закон изменения входного сигнала v неизвестен заранее. Примерами таких систем соответственно являются системы стабилизации скорости вращения и частоты; система автоматического управления промышленного робота, работающая в режиме отработки заданных (программных) движений; радиолокационные следящие системы измерения координат движущегося объекта. С развитием практики и теории автоматического управления появляются новые классы систем: системы с поиском экстремума показателя качества, системы оптимального упрaвления, адаптивныe систeмы. Приведем классификацию систем по виду законов управления. под законом управления будем понимать зависимость выходного сигнала регулятора u от сигнала ошибки e. Для простоты примем, что u и Е – скалярные величины, которые обозначим малыми буквами; тогда в общем случае закон управления будет иметь вид: . Простейшими случаями этого соотношения являются: - пропорциональный закон (П-закон): - интегральный закон (И-закон): - пропорционально-интегральный закон (ПИ-закон): ; - пpопоpционально-интeгально-диффepeнциальный закон (ПИД-закон): , где K – коэффициент передачи; а T, T 1, T 2 – постоянные времени. По количеству управляемых координат системы делятся на одномерныe По характеру протекающих процессов системы делятся на непрерывные (все сигналы непрерывны во времени) и импульсные (хотя бы один из сигналов дискретизирован (квантован) во времени). Если хотя бы один из сигналов в системе является квантованным по уровню, то она относится к релейным системам. При одновременном квантовании сигнала по уровню и времени систему относят к цифровым. Релейные, импульсные и цифровые системы составляют класс дискретных систем автоматического управления. По зависимости выходных сигналов отдельных элементов от входных системы делятся на линейные и нелинейные. По виду параметров, характеризующих отдельные элементы и устройства, системы делятся на системы с сосредоточенными или распределенными параметрами, стационарные (все параметры постоянны во времени), нестационарные (параметры изменяются во времени), системы с детерминированными параметрами (закон изменения параметров известен), со случайными (стохастическими) параметрами (заданы их вероятностные характеристики), с неопределенными параметрами (может, например, задаваться только область их изменения). Приведенная классификация не охватывает всех классов существующих систем. Например, можно выделять еще системы с запаздыванием, системы с перестраиваемой структурой. Адаптивные системы делятся на самонастраивающиеся и самоорганизующиеся. Отметим, что первыми промышленными системами автоматического управления считаются регулятор уровня воды в котле паровой машины и центробежный регулятор скорости вращения вала паровой машины. На рис. 1.9 представлена простейшая структура системы регулирования скорости вращения двигателя постоянного тока, которая содержит объект управления – двигатель (Дв), скорость вращения которого y является управляемой координатой (возмущение f характеризует влияние момента нагрузки на скорость вращения); управляющее устройство включает тахогенератор (Тг), напряжение на выходе которого пропорционально скорости вращения y; устройство сравнения e = v – x, вкачестве которого может применяться суммирующий операционный усилитель или потенциометрический мостик; УП – усилительно-преобразовательные устройства, включающие предварительные усилительные каскады и корректирующие устройства, которые придают системе определенные свойства; УМ – усилитель мощности. Входной сигнал v ввиде напряжения задает режим работы системы. Если v = const, то система будет системой стабилизации. Изменяя v во времени, можно изменять скорость вращения, и систему можно рассматривать как систему программного управления или следящую.
Рис. 1.9
Если v = const при заданной величине f, то на выходе имеем некоторую номинальную скорость yН, которой будут соответствовать номинальное значение напряжения тахогенератора хН, ошибка еН и соответственно напряжение управления uН, поддерживающее номинальную скорость вращения. Увеличение момента нагрузки f приведет к уменьшению величин y и x, возрастанию сигнала ошибки e, что обусловит увеличение подаваемого напряжения u на двигатель. Таким образом, скорость возрастет до номинальной (или близкой к номинальной). Если f уменьшить, то процесс регулирования будет идти в обратном направлении. Таким образом, происходит автоматическая компенсация влияния нагрузки на скорость двигателя и поддержание скорости в заданных пределах. В качестве следующего примера рассмотрим цифровой электропривод, структура которого представлена на рис. 1.10. Рис. 1.10
Управляемой координатой является угол поворота y некоторого механизма (M), подсоединенного к двигателю (Дв) через редуктор (P) (например одна из степеней подвижности промышленного робота). ДУ – датчик угла, выходом которого является напряжение, пропорциональное углу поворота. Это напряжение поступает на аналого-цифровой преобразователь (АЦП). Сигнал x представляет собой цифровой код угла и поступает на микроЭВМ (или микропроцессор). На микроЭВМ поступает (например от ЭВМ более высокого уровня) требуемый код угла поворота. В простейшем случае микроЭВМ производит сравнение сигналов v и x , т. е. выступает в роли устройства сравнения. В более общем случае микроЭВМ реализует некоторый закон управления (например ПИД-закон) в цифровой форме. Далее сигнал е в цифровом коде поступает на цифроаналоговый преобразователь (ЦАП), после которого через элементы УП и УМ воздействует на двигатель. Такая система может работать в режиме позиционирования, отрабатывая заданный угол v = const, либо в режиме непрерывной отработки угла, изменяющегося по определенной программе. Существенным отличием этой системы является наличие элементов цифровой техники (ЦАП, АЦП, микроЭВМ), для которых характерно квантование сигналов по уровню и по времени.
Дата добавления: 2014-12-07; Просмотров: 856; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |