Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Что такое психология 21 страница




В любой момент времени наш мозг осведомлен о положении тела в пространстве благодаря той информации, которая поступает в него по различным сенсорным каналам. Эта информация, по-видимому, сте­кается в область, расположенную на стыке трех долей мозга, включаю­щих главные сенсорные зоны. Речь идет о так называемой «дугообраз-» ной складке», расположенной в верхней части сильвиевой борозды (см.

Биологические основы поведения

Затылочка r кора

Рис, А.26. Зрительный перекрест (хиазма) и зрительные пути. Информация о событиях в правой половине поля зрения поступает в левую затылочную до*лю из левой части каждой сетчатки; информация же о правой половине поля зрения направляется б левую затылочную долю из правых частей обеих сетчаток. Такое перераспределение информации от каждого глаза происходит *в результате перекрещивания части волокон зрительного нерва на уровне зрительной хиазмы.

 

 

рис. А.24), которая получает также нервные сигналы, передаваемые таламусом и различными ядрами. Повреждение этой зоны ведет к расстройству жестикуляции и ориентировки в пространстве.

Способность мозга определять время совершения события в основ­ном зависит от памяти. Проведенные недавно исследования, по всей видимости, указывают на то, что способность ориентироваться во времени особенно свойственна высшим животным и что она в известных пределах не зависит от циркадианных ритмов (Richelle, Lejeune, 1986).

Память, очевидно, не связана с какой-то одной специфической областью мозга; она зависит от многочисленных зон, играющих важную роль, В особенности это касается некоторых областей височной коры и в еще большей мере-гиппокампа (см. документ 8Л).

Речь и язык одновременно связаны с такими сенсорными функциями,

I?

25В Приложение Л

как слух и зрение и с двигательными функциями, необходимыми для устной речи и письма (см, документ 8.4). Центры, ответственные за эти функции, находятся в разных областях мозга, особенно в лобной, затылочной и височной долях. У подавляющего большинства людей лингвистическая активность контролируется левым полушарием мозга.

Планирование действий, которое* собственно, и составляет суть мышления, происходит в префронтальной коре (т. е. в передних участках лобных долей) в результате объединения и переработки ею информации, получаемой и расшифровываемой в других зонах коры. Именно в префронтальной коре находятся структуры, определяющие способность к счету, предсказанию и предвидению1.

Наконец, управление сложными психомоторными функциями осу* ществляется на уровне верхних отделов мозгового ствола. Эта область мозга представляет собой настоящую «телефонную станцию» (Lazorthes, 1973), объединяющую информацию от рецепторов и моторные сигналы из коры мозга. Благодаря этому она может контролировать выполнение движений, планируемых лобной корой.

-

Специализация полушарий "

Развитие центральной нервной системы уже у плоских червей (напри­мер, у планарнй) сопровождается возникновением билатеральной (дву­сторонней) симметрии всего тела. Тело оказывается разделенным в продольном направлении на две половины, каждая из которых представ­ляет собой зеркальное отражение другой, причем левая половина тела находится под контролем правой стороны мозга, и наоборот,

В процессе эволюции предков человека каждое мозговое полушарие приобретало все большую специализацию, что в особенности прояви­лось в предпочтительном пользовании правой или левой рукой, разви­тии речи, пространственной ориентации и полярности эмоциональных состояний.

I

Предпочтительное пользование той или другой рукой. Правши состав­ляют около 90% всех людей; по-видимому, доминирование правой руки существовало уже у пещерных предков человека2. Не следует, однако, думать, что такая ситуация обязательно обусловлена наследственными факторами. Статистически установлено, что ребенок, у которого оба родителя левши, имеет примерно один шанс из двух стать правшой.

Речь* У подавляющего большинства людей центры речи расположе­ны в левом полушарии. Только 5% правшей и 30% левшей, т. е. менее

1 У человека эта область занимает 29% поверхности коры, у шимпанзе 17%, а у собаки всего 7% (Changeих).

1 По-видимому, при создании наскальных изображений человека контур руки нередко наносился с помощью трафарета, которым служила свободная рука самого художника, и е 80% таких случаев это была левая рука. Значит, контур обводился обычно правой рукой.

Биологические оаиты птсдегш.ч 259

 

8% всех людей, разговаривают с помощью правого полушария. Соглас­но Рош-Лекуру (цит. по Changeux, 1983), все дети появляются на свет с речевыми зонами в обоих полушариях, однако в процессе развития на первом году жизни одно из них «берет верх» над другим. Поэтому отсутствие или случайная утрата одного полушарий при рождении или в первые два года жизни может быть компенсирована, так как соответст­вующие функции способно взять на себя второе полушарие.

То, что некоторые функции представлены только в одном полуша­рии,,может означать, что это полушарие (обычно левое) подавляет активность другого. Иными словами, вследствие блокады недоминант­ного полушария доминантным через межполушарные волокна мозолис­того тела недоминантное полушарие остается пассивным.

В лополнении А,3 приводятся наблюдения ученых за работой обоих мозговых полушарий, ставших независимыми после перерезки мозолис­того тела. Эти наблюдения позволили выявить важную роль мозолисто­го тела в межполушарных взаимодействиях и в особенности роль доминантного полушария в объединении информации. Благодаря такой организации большого мозга вся нервная система в целом получает возможность работать согласованно и эффективно. Так, например, нервные сигналы, вызванные раздражением левой руки и приходящие в правое полушарие, автоматически передаются в доминантное левое полушарие. Лишь после того как девое полушарие ознакомилось с этой информацией, в первое полушарие посылается команда, заставляющая левую руку выполнить нужное движение.

Эмоциональные состояния. По-видимому, каждое полушарие мозга, помимо прочего, отвечает за направленность чувств человека и их позитивную или негативную окраску. Так, например, если патологичес­кий очаг у больного эпилепсией находится в левом полушарии мозга, человека нередко охватывает беспредметный смех, а если в правом, то больной более склонен к грусти и слезам.

Было также показано, что у людей во время депрессии в области правого полушария нередко регистрируются аномальные электрические волны. Это привело к предположению, что правое полушарие ответст­венно за эмоциональные состояния с негативной окраской и способст­вует тому, что человек видит прежде всего отрицательные стороны событий, тогда как левое полушарие придает эмоциональным реакциям на те или иные события положительную окраску. Таким образом, чувство или эмоциональное состояние человека будет определяться балансом этих противоположных тенденций. Однако, как подчеркивает Шанжё, вопрос о том, как мозгу удается без острого конфликта сделать взвешенный выбор, до сих пор остается полной загадкой.

Половые различия. Были обнаружены некоторые различия в строении мозга у мужчин и женщин. Например, недавно выяснилось, что у жен­щин в определенном участке мозолистого тела больше нервных воло­кон, чем у мужчин. Это может означать, что межполушарные связи у женщин более многочисленны и поэтому у них лучше происходит объединение информации, имеющейся в обоих полушариях; этим можно

17*

260 Приложение Л

объяснить и некоторые половые различия в поведении. Кроме того, выявленные у женщин более высокие показатели, связанные с лингвисти­ческими функциями, памятью, аналитическими способностями и тонким ручным манипулированием можно связать с большей относительной активностью у них левого полушария мозга. Напротив, функции воспри­ятия и способность к оценке пространственных отношений и художест­венному творчеству, видимо, лучше развиты у мужчину что может объясняться большим участием в этих процессах правого полушария. Еще раз, однако, отметим, что в первые годы жизни оба полушария способны хранить одинаковые количества и одинаковые виды информа* ции и что специализация полушарий происходит лишь очень постепенно. В связи с этим можно задаться вопросом: какова роль культуры и воспитания в формировании различий между женщинами и мужчина­ми* в частности различий в развитии нервных функций, обусловливаю-щих те или иные способности?

Дополнение A3. Расщепленный мозг

Сперри (Sperry, 1968) решил выяснить, что произойдет с нервной регуляцией функций организма и особенно с процессами восприятия информации, если полностью перерезать мозолистое тело, разобщив тем самым мозговые полушария1. Хотя такая операция обычно не вызывает сколько-нибудь серьезных нарушений повседневного поведе­ния больных, было тем не менее замечено, что они действуют в сущно­сти так, как если бы у них было два мозга.

Напомним* что информация из правой половины поля зрения прое­цируется в левое полушарие, и наоборот. У большинства людей «разго­варивает» левое полушарие, которое интерпретирует события, происхо­дящие в превой половине зрительного поля, и посылает команды мышцам превой половины тела. Правое-«немое»-полушарие расшиф­ровывает информацию из левой половины поля зрения р управляет движениями правой стороны тела.

Сперри наблюдал людей с «расщепленным» мозгом в различных экспериментальных ситуациях, В одной из них испытуемый находился перед экраном, на который проецировались изображения разных пред-мехов* попавшие в левую или правую половину поля зрения, Оновремен-но испытуемый руками, скрытыми от его взора, трогал предметы, изображения которых могли проецироваться на правую или левую половину экрана (рис, А.27),

1 Людей иногда подвергают этой операции, чтобы ослабить проявление таких заболеваний, как, например, эпилепсия- По мнению некоторых нейро­хирургов, это вмешательство оправдано тем, что переход через мозолистое тело нервного возбуждения из эпилептогенного очага, находящегося в одном полу­шарии, в симметричный участок другого полушария может способствовать развитию и усилению эпилептического припадка.

аашш ттеденыя

Рис, А,27, Расщепленный мозг. Испы­туемому с перерезанным мозолистым телом предъявляют в левой части экра­на изображение карандаша, воспрнни* маемое правым полушарием, а в пра­вой части экрана - изображение вилки, воспринимаемое левым полушарием. Когла испытуемого просят взять левой рукой (управляемой правым полуша­рием) увиденный им предмет, он вы­бирает карандаш, Однако если его спросить, какой предмет он выбрал, он отвечает* что выбрал вилку {как под­сказывает ему левое полушарие, от­ветственной за речь и игнорирующее все зрительные восприятия и инструк­ции другого полушария).

Исследователи обнаружили, что испытуемый мог после ощупывания предметов взять левой рукой тот из них, изображение которого на короткое время появилось в левой части экрана. Но он не мог ни назвать этот предмет, ни описать словами действия своей левой руки. Когда изображение предмета проецировалось в правой части экрана, наблюда­лись противоположные отношения.

Тогда Сперри и его сотрудники решили выяснить, что произойдет, если изображения разных предметов предъявить на обеих половинах экрана одновременно-например, на левую его часть проецировать изображение карандаша, а на правую-изображение вилки. Когда испы­туемого попросили левой рукой, скрытой от его взора, выбрать тот предмет, изображение которого появилось на экране, он выбрал каран­даш. Но когда ему предложили назвать выбранный им предмет, он, немного поколебавшись, ответил, что эта вилка-

Таким образом, «говорящее» полушарие испытуемого отвечало* руководствуясь тем, что оно перед собою «видело», полностью игнори­руя команды, посылаемые другим полушарием левой руке.

Такого рода наблюдения позволили продемонстрировать ту важную роль, которую в согласованном функционировании всего организма играют мозолистое тело и в особенности доминантное полушарие мозга; последнее непрерывно интегрирует нервные сигналы, обеспечи­вающие совершенную координацию и высокую эффективность работы отдельных частей тела.

 

Источники: Sperry R. Wi, "The great cerebral commissure", Scientific American, jan. I964:

Sperry Д? W.y "Hemisphere deconncction and unity in conscious awareness", Ameri­can Psychologist, 196&, n° 23, p. 723-733.

262 Приложение А

Структура и функции нейрона

Структурной единицей нервной системы является нервная клетка, или нейрон. Нейроны отличаются от других клеток организма многими особенностями. Прежде всего их популяция, насчитывающая от 10 до 30 млрд. (а быть может, и больше1) клеток, почти полностью «укомплекто­вана» уже к моменту рождения, и ни один из нейронов, если он отомрет, не замещается новым. Принято считать, что после того, как человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается.

Другая особенность нейронов состоит в том, что в отличие от клеток других типов они ничего не продуцируют, не декретируют и ие структу­рируют; единственная их функция заключается в проведении нервной информации...

Структура нейрона

Существует много типов нейронов, структура которых варьирует в зависимости от выполняемых ими в нервной системе функций; сенсор­ный нейрон отличается по своему строению от моторного нейрона или нейрона мозговой коры (рис, А.28).

Но какой бы ни была функция нейрона, все нейроны состоят из трех основных частей: тела клетки, дендритов и аксона.

Тело нейрона, как и всякой другой, клетки, состоит из цитоплазмы и ядра. Цитоплазма нейрона, однако, особенно богата митохондриями, ответственными за выработку энергии, необходимой для поддержания высокой активности клетки. Как уже отмечалось, скопления тел нейро­нов образуют нервные центры в виде ганглия, в котором число клеточ­ных тел исчисляется тысячами, ядра, где их еще больше, или, наконец, коры, состоящей из миллиардов нейронов. Тела нейронов образуют так называемое серое вещество.

Дендриты служат нейрону своего рода антеннами. Некоторые нейро­ны имеют много сотен дендритов, принимающих информацию от рецепторов или других нейронов и проводящих ее к телу клетки и ее единственному отростку другого типа - аксону.

Аксон представляет собой часть нейрона, ответственную за передачу информации дендритам других нейронов, мышцам или железам. У од­них нейронов длина аксона достигает метра, у других аксон очень короткий. Как правило, аксон ветвится, образуя так называемое терми­нальное дерево; на конце каждой ветви имеется синаптическая бляшка. Именно она и образует соединение (синапс) данного нейрона с дендри-тами или телами других нейронов.

1 Предположение, что нервная система состоит из 30 млрд. нейронов, сделал Пауэлл с сотрудниками (Powell et al, 1980), который показал, что у млеко­питающих независимо от вида на 1 мм* нервной ткани приходится около 146 тысяч нервных клеток. Общая же поверхность человеческого мозга составляет 22 дм2 (Changcux, 1983, р. 72).

Биологические основы поведения

Рис- А.28. Различные типы нейронов.

 

Большинство нервных волокон (аксонов) покрыто оболочкой, состо­ящей из миелина-белого жироподобного вещества, выполняющего функции изоляционного материала. Миелиновая оболочка с регуляр­ными промежутками в 1-2 мм прерывается перетяжками -перехватами РатьСь которые увеличивают скорость пробегания нервного импульса по волокну, позволяя ему «перепрыгивать» с одного перехвата на

264 Приложение А

другой, вместо того чтобы постепенно распространяться вдоль волокна. Сотни и тысячи собранных в пучки аксонов образуют нервные пути, которые благодаря миелину имеют вид белого вещества.

Нервный импульс

Информация поступает в нервные центры, перерабатывается там и затем передается эффекторам в виде нервных импульсов, пробегающих по нейронам и соединяющим их нервным путям.

Независимо- от того, какую информацию передают нервные импуль­сы, пробегающие по миллиардам нервных волокон> они ничем не отличаются друг от друга. Почему же в таком случае импульсы, идущие от уха, передают информацию о звуках, а импульсы от глаза-о форме или цвете предмета, а не о звуках или,о чем-нибудь совсем ином? Да просто потому, что качественные различия между нервными сигналами определяются не самими этими сигналами, а тем местом, куда они приходят: если это мышца, она будет сокращаться или растягиваться; если это железа, она будет выделять секрет, уменьшать или прекращать секрецию; если это определенная область мозга, в ней будет формиро­ваться зрительный образ внешнего стимула или же сигнал подвергнется расшифровке в виде, например, звуков. Теоретически достаточно было бы изменить ход нервных путей, например* часть зрительного нерва в зону мозга, ответственную за расшифровку звуковых сигналов, чтобы заставить организм «слышать глазами».

Потенциал покоя и потенциал действия

Нервные импульсы передают по дендритам и аксонам не сам внешний стимул как таковой и даже не его энергию. Внешний стимул лишь активирует соответствующие рецепторы, и эта активация преобра­зуется в энергию электрического потенциала, который создается на кончиках дендритов, образующих контакты с рецептором.

Возникающий при этом нервный импульс можно грубо сравнить с огнем, бегущим вдоль бикфордова шнура и поджигающим располо­женный у него на пути патрон с динамитом; «огонь», таким образом, распространяется по направлению к конечной цели за счет небольших следующих друг за другом взрывов. Передача нервного импульса* однако, принципиально отличается от этого тем, что почти сразу же после прохождения разряда потенциал нервного волокна восстанавли­вается.

Нервное волокно в состоянии покоя можно уподобить маленькой батарейке; с наружной стороны его мембраны имеется положительный заряд, а с внутренней-отрицательный (рис. А.29), и этот потенциал покоя преобразуется в электрический ток только при замыкании обоих полюсов. Именно это и происходит при прохождении нервного импуль­са,, когда мембрана волокна на какое-то мгновение становится проницае­мой и деполяризуется. Вслед за этой деполяризацией наступает период рефрактерности в течение которого мембрана реполяризуется и восста-

Биологические опыты поведения

2Ь5

Рис. А.29. Потенциал действия. Развитие потенциала действия, сопровождаю­щееся изменением электрического напряжения (от -70 до +40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увели­чивается.

навливает способность к проведению нового импульса1. Так за счет последовательных деполяризаций и происходит распространение этого потенциала действия (т. е. нервного импульса) с постоянной скоростью, варьирующей в пределах от 0,5 до 120 метров в секунду в зависимости от типа волокна, его толщины и наличия или отсутствия у него миелиновой оболочки,

Закон «всё или ничего». Поскольку каждому нервному волокну присущ определенный электрический потенциал, распространяющиеся по нему импульсы независимо от интенсивности или каких-либо других свойств внешнего стимула всегда имеют одни и те же характеристики, Это означает, что импульс в нейроне может возникнуть только в том случае, если его активация, вызванная стимуляцией рецептора или

1 Во время периода рефрактерности, длящегося около тысячной доли се­кунды, нервные импульсы по волокну проходить не могут. Поэтому за одну секунду нервное волокно способно провести не более 1000 импульсов.

Приложение А

импульсом от другого нейрона, будет превосходить некий порог, ниже которого активация неэффективна; но, если порог достигнут сразу же возникает «полномерный» импульс. Этот факт получил название закона

«всё или ничего».

Сннаптическая передача

Синапс, Синапсом называют область соединения между окончанием аксона одного нейрона и дендритами или телом другого. Каждый нейрон может образовать до 800-1000 синапсов с другими нервными клетками, а плотность этих контактов в сером веществе мозга состав­ляет боле 600 млн- на 1 ми3 (рис. А.30):.

Место перехода нервного импульса с одного нейрона на другой

Рис. А.30. Синаптическое соединение нейронов (в середине область синапса при большем увеличении). Терминальная бляшка пресинаптического нейрона содер­жит пузырьки с запасом нейро медиатора и митохондрии, доставляющие энергию, необходимую для передачи нервного сигнала,

1 Это значит, что если за одну секунду отсчитывать по 1000 синапсов, то для их полного пересчета потребуется от Э до 30 тысяч лет (Changeux, 1983, р. 75).

Бшиогическт* оашш 1шае<кчш.ч

Рис* A+3L la. Медиатор А, молекулы которого освобождаются нз концевой бляшки нейрона I, связывается специфическими рецепторами на дендритах нейрона IT. Молекулы ХФ которые по своей конфигурации не подходят к этим рецепторам, занять их не могут и потому не вызывают каких-либо еннаптических эффектов.

16. Молекулы М (например, молекулы некоторых психотропных препаратов) сходны по своей конфигурации с молекулами нейро медиатора А и поэтому могут связываться с рецепторами для этого медиатора, таким образом мешая ему выполнять свои функции. Например, ЛСД мешает серотонину подавлять про­веден йё сенсорных сигналов.

2а и 26. Некоторые вещества, называемые нейромодуляторами, способны воздействовать на окончание аксона, облегчая или подавляя высвобождение нейромеАиатора,

представляет собой, собственно, не точку контакта, а скорее узкий промежуток, называемый синоптической щелью. Речь идет о щели шириной от 20 до 50 нанометров (миллионных долей миллиметра), которая с одной стороны ограничена мембраной пресинаптической бляшки нейрона, передающего импульс, а с другой-постсинаптической мембраной дендрита или тела другого нейрона, принимающего нервный сигнал и затем передающего его дальше,

Нейромедиаторы. Именно в синапсах происходят процессы, в резуль­тате которых химические вещества, освобождаемые пресинаптической мембраной? передают нервный сигнал с одного нейрона на другой. Эти вещества, получившие название нейромедиаторов (или просто медиато­ров),-своего рода «мозговые гормоны» (нейрогормоны)-накапливают-

26& Приложение А

ся в пузырьках синаптических бляшек и освобождаются, когда по аксону сюда приходит нервный импульс.

После этого медиаторы диффундируют в синаптическую щель и при­соединяются к специфическим рецепторным участкам постсинаптиче-ской мембраны, т.е. к таким участкам, к которым они «подходят* как ключ к замку», В результате этого проницаемость постсинаптической мембраны изменяется, и таким образом сигнал передается с одного нейрона на другой; медиаторы могут также и блокировать передачу нервных сигналов на уровне синапса, уменьшая возбудимость постси-наптического нейрона.

Выполнив свою функцию, медиаторы расщепляются или нейтрали­зуются ферментами либо всасываются обратно в пресинаптическое окончание, что приводит к восстановлению их запаса в пузырьках к моменту прихода следующего импульса (рис. А.31).

Возбуждающая или тормозная функция синапса зависит главным образом от типа выделяемого им медиатора и от действия последнего на постсинаптическую мембрану. Некоторые медиаторы всегда оказы­вают только возбуждающее действие, другие-только тормозное {инги-бирующее), а третьи в одних отделах нервной системы играют роль активаторов, а в других-ингибиторов.

Функции главных нейромедиаторов. В настоящее время известно несколько десятков этих нейрогормонов, но их функции изучены пока недостаточно. Сказанное, например, относится к ацетилхолину, который участвует в мышечном сокращении, вызывает замедление сердечного и дыхательного ритма и инактивируется ферментом ацетилхолииэстера-зой1. Не вполне изучены и функции таких веществ из группы моноами-нов, как норадреналин, отвечающий за бодрствование мозговой коры и учащение сердечного ритма, дофамин, присутствующий в «центрах удовольствия» лимбической системы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания, или серотонии который регулирует сон и определяет объем информации, циркулирующей в сенсорных путях. Частичная инактивация моноаминов происходит в результате их окисления ферментом моиоаминоксидазой. Этот процесс, обычно возвращающий активность мозга к нормальному уровню, в некоторых случаях может приводить к чрезмерному ее снижению, что в психологическом плане проявляется у человека в чувст­ве подавленности (депрессии).

Гамма-амииомасляиая кислота (ГЛМК) представляет собой нейро-медиатор, выполняющий примерно ту же физиологическую функцию, что и моноаминоксидаза. Ее действие состоит главным образом в сни­жении возбудимости мозговых нейронов по отношению к нервным импульсам.

1 По-в или м ом у, недостаток ацстилхолина в некоторых ядрах промежуточ­ного мозга-одна из главных причин болезни Л л ыд гей мера, а недостаток до­фамина в скорлупе (одно из базальных ядер) может быть причиной болезни Парки неона.

биологические основы поведения

Наряду с нейроедиаторами существует группа так называемых нейромодуляторов* которые в основном участвуют в регуляции нервного ответа, взаимодействуя с медиаторами и видоизменяя их эффекты. В качестве примера можно назвать вещество Р и брадикинин, участвую-щие в передаче болевых сигналов. Освобождение этих веществ в синап­сах спинного мозга, однако, может быть подавлено секрецией эндорфи-пов и энкефалина, которая таким образом приводит к уменьшению потока болевых нервных импульсов (рис. А.31, 2а). Функции модулято­ров выполняют и такие вещества, как фактор S, играющий, по-видимо­му, важную роль в процессах сна? холецистокинищ ответственный за чувство сытости, ангиотензиНу регулирующий жажду, и другие агенты.

Ненромеднаторы и действие психотропных веществ. В настоящее время известно, что различные психотропные препараты действуют на уровне синапсов и тех процессор в которых участвуют нейро медиаторы и нейромодуляторы.

Молекулы этих препаратов по своей структуре сходны с молекулами определенных медиаторов, что и позволяет им «обманывать» различные механизмы синаптической передачи. Таким образом они нарушают действие истинных нейромедиаторов, либо занимая их место на рецеп-торных участках, либо мешая им всасываться обратно в пресинаптиче-ские окончания или подвергаться разрушению специфическими фермен­тами (рис. АЛ, 26),

Установлено, например что ЛСД, занимая серотониновые рецептор-ные участки, мешает серотонину затормаживать приток сенсорных сигналов. Таким образом ЛСД открывает доступ к сознанию для самых разнообразных стимулов, непрерывно атакующих органы чувств.

Кокаин усиливает эффекты дофамина, занимая его место в рецептор-ных участках. Подобным же образом действуют морфин и другие опиаты, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторные участки для эндорфиновi.

Действие амфетаминов обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями, В резуль­тате накопление избыточного количества нейрогормона в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры.

Принято считать, что эффекты так называемых транквилизаторов (например, валиума) объясняются главным образом их облегчающим влиянием на действие ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора. Наоборот* как антидепрессанты действуют главным образом ферменты, инактивирую-щие ГАМК, или такие препараты, как, например, ингибиторы моноами-

1 Несчастные случаи, связанные с передозировкой наркотиков, объясняются тем, что связывание чрезмерного количества, например, героина эндорфиновыми рецепторами в нервных центрах продолговатого мозга приводит к резкому угнетению дыхания, а иногда и к полной его остановке (Besson 19S8, Science et Vie, Hors seric, nc 162).

270 Приложение А

у введение которых увеличивает количества моноаминов в си­напсах.

Смерть от некоторых отравляющих газов наступает вследствие удушья. Такое действие этих газов связано с тем, что их молекулы блокируют секрецию фермента, разрушающего ацетилхолин. Между тем ацетилхолин вызывает сокращение мышц и замедление сердечного и дыхательного ритма. Поэтому его накопление в синоптических про­странствах приводит к угнетению, а затем и полной блокаде сердечной и дыхательной функций и одновременному повышению тонуса всей мускулатуры.

Изучение нейромедиаторов еще только начинается, и можно ожи­дать, что в скором времени будут открыты сотни, а может быть и тысячи этих веществ, многообразные функции которых определяют их первостепенную роль в регуляции поведения.

 

Дополнение АА Нервная активность н сканер

 

До недавнего времени единственным методом, позволяющим реги­стрировать электрическую активность мозга с помощью электродов, размещенных в разных участках черепной коробки, была электроэнцефа­лография (см. документ 4Л). Но записи, которые получают этим методом, с трудом поддаются расшифровке, и поэтому чаще всего




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.071 сек.