КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Двухтактные детекторы
Двухтактный детектор. В качестве управляющих элементов в детекторе (рис. 8.32) используют два транзистора. Противофазные сигналы управления отрицательной полярности подаются на базы транзисторов. Когда один транзистор закрыт отрицательным импульсом, в базе другого — нулевой потенциал и транзистор открыт. С помощью транзисторов осуществляется прерывание входного сигнала. Сигнал с эмиттеров транзисторов подается на ОУ. С помощью резисторов R5 и R7 устанавливается необходимый коэффициент усиления (K=10). Подбором резисторов R6 и R8 выравнивают амплитуды сигналов, которые проходят на выход ОУ. Детектор работает на частотах до сотен килогерц. Рис. 8.32
Детектор на полевых транзисторах. Детектор (рис. 8.33) состоит из двух ключей и ОУ. В качестве ключей применены полевые транзисторы, позволяющие коммутировать сигналы низкого уровня. Минимальный входной сигнал равен 10 мВ, управляющий сигнал подается на затворы полевых транзисторов, сигнал положительной полярности на неинвертирующий вход ОУ, а отрицательная полярность входного сигнала — на инвертирующий вход усилителя. В результате на выходе ОУ формируется сигнал положительной полярности. Регулировка коэффициента усиления осуществляется резистором R3. Входное сопротивление детектора более 40 кОм, а выходное менее 200 Ом. Граничная частота входного сигнала 20 кГц. Погрешность преобразования менее 0,5%. Синхронные фильтр и детектор. В состав синхронного детектора (рис. 8.34) входит синхронный фильтр, построенный на элементах R1, С1, С2 и управляемый транзисторами микросхемы DA1.
Рис. 8.33 Рис. 8.34
Эти транзисторы поочередно открываются импульсным напряжением с амплитудой 2 В. Операционный усилитель детектирует сигналы фильтра, в результате чего на выходе появляется постоянная составляющая. Коэффициент передачи схемы равен 20, температурный дрейф 0,1%/град. Постоянная времени приблизительно 1,5 с. Максимальная амплитуда входного сигнала ±0,5 В. Температурный дрейф нуля 20 — 50 мкВ/град. Высокочастотный синхронный детектор. В синхронном детекторе (рис. 8.35) перемножающим элементом является микросхема DA1. Интегральная микросхема DA2 преобразует парафазный сигнал перемножителя в однофазный. При этом значительно ослабляются синфазные помехи, которые могут быть в цепях питания. На нулевой выходной потенциал схема настраивается с помощью потенциометра R12. Синхронный детектор работает на частоте 30 МГц. Исследуемый сигнал с частотой модуляции 2 — 20 МГц и амплитудой 150 мкВ — 250 мВ подается на Вход 1. Опорный сигнал с амплитудой 0,1 В подается на Вход 2. Максимальная амплитуда выходного сигнала равна 0,3 В. Нелинейность частотной характеристики менее 3%, а нелинейность амплитудной характеристики 2%. Верхняя граничная частота модуляции входного сигнала определяется полосой пропускания ОУ DA2. На выходе этого усилителя включены два фильтра, которые ослабляют составляющие с частотами 30 и 60 МГц более чем на 60 дБ. Эти составляющие появляются в результате перемножения входного и опорного сигналов в интегральной микросхеме DA1. Для устранения возбуждения микросхемы DA2 необходимо включить между контактами 2 и 4 конденсатор емкостью 16 пФ и между контактами 2 и 12 — резистор сопротивлением 100 Ом и конденсатор емкостью 56 пФ. Детектор на перемножителе. Основой синхронного детектора (рис. 8.36) является микросхема DA3. На Вход 2 детектора подается преобразуемый сигнал, а на Вход 1 — опорный сигнал. Для линеаризации рабочей характеристики детектора опорный сигнал, проходит на микросхему DA3 через логарифмический каскад. Этот каскад построен по дифференциальной схеме на DA2 с диодной нагрузкой в коллекторах (DA1). Такое включение позволяет создать режим работы микросхемы DA3 по постоянному току, обеспечивая хорошую температурную стабилизацию и высокий коэффициент подавления опорного сигнала на выходе микросхемы DA3. Амплитуда опорного сигнала равна 0,5 В. Балансировка перемножителя по постоянному току осуществляется потенциометрами JR3 и R13. Когда опорный сигнал равен нулю, то с помощью резистора КЗ добиваются максимального подавления преобразуемого сигнала. С помощью резистора R13 добиваются максимального подавления опорного сигнала при нулевом сигнале на Входе 1. Выходной парафазный сигнал перемножителя подается на микросхему DA4, которая дополнительно усиливает его в 10 раз, что позволяет существенно ослабить влияние синфазной помехи в цепи питания и уменьшить дрейф нуля. Рис. 8.35 Рис. 8.36
Детектор работает в диапазоне частот от 20 Гц до 2 МГц. Неравномерность коэффициента передачи в этом диапазоне менее 3%. Амплитуда преобразуемого сигнала меняется от 0,2 мВ до 0,5 В при точности преобразования 1%. При увеличении амплитуды сигнала до 1 В точность преобразования снижается до 3%.
Глава 9
Дата добавления: 2014-11-29; Просмотров: 2031; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |