Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Передаточные функции (ПФ) звеньев системы




Структурная схема системы.

Описание работы системы.

Входной сигнал подается на ЧЭ, на котором сравнивается с сигналом обратной связи. Затем сигнал подается на РП, представляющий собой звено с ПФН и ВТ после которого усиливается и корректируется на КЗ. Далее сигнал поступает на РС, служащий для поддержания постоянной скорости передвижения исполнительного механизма, затем после РС поступает на РН, контролирующий напряжение. Он позволяет регулировать скорость двигателя в широком диапазоне за счет ширины выдаваемых прямоугольных импульсов ИД через регулятор Р1 вращает механизм передачи, являющийся ШВП. Для контроля перемещения ШВП стоит ВТ, соединенный с винтом передачи с помощью ре­дуктора Р2.

 

В соответствии с исходной блок-схемой приведена структурная схема системы (на рис.3). Общие правила ее составления следующие:

3.1. Система представляется в виде совокупности звеньев и их взаимосвязи согласно заданной блок-схеме.

3.2. Элементы, формирующие сигнал единичной обратной связи с единицей измерения управляющего для (системы) контура сигнала, показываются в цепи обратной связи. Далее при описании замкнутой системы коэффициент передачи звена (совокупности звеньев) принимается равным единице.

3.3. Элемент, выполняющий сравнение (вычитание) сигналов задания и главной обратной связи, вносится в прямой тракт в виде автономного элемента или в совокупности с элементами, формирующими сигнал главной обратной связи. На схеме дается условное обозначение элемента сравнения, его коэффициент передачи принимается равным единице.

3.4. При замыкании внутренних контуров местной единичной обратной связью поступают аналогично пп. 3.2 и 3.3.

3.5. Нумерация передаточных функций дается в индексах, порядок нумерации слева направо.

3.6. Показываются входная и выходная координаты, ошибка и необходимые для использования в расчетах промежуточные координаты.

Приводится структурная схема системы, и дается расшифровка обозначения

передаточных функций. При необходимости отмечаются ее особенности.

Например. Структурная схема системы приведена на рис. 4. На схеме приняты следующие обозначения:

- передаточная схема чувствительного элемента;

- передаточная функция регулятора положения;

- передаточная функция последовательного корректирующего звена;

- передаточная функция регулятора скорости;

- передаточная функция регулятор напряжения (тока);

- передаточная функция усилителя мощности;

- передаточная функция двигателя;

- передаточная функция регулятора;

- передаточная функция шариковинтовой передачи;

- передаточная функция датчика напряжения;

- передаточная функция тахогенератора.

Особенности схемы:

1) форма управляющего сигнала - напряжение, крутизна характеристики назначается ниже;

2) формирователь сигнала обратной связи выполнен на элементах структурной схемы: шариковинтовая передача, редуктор Р2, вращающийся трансформатор, работающий в фазовом режиме, преобразователь фаза-напряжение;

3) элемент сравнения - усилитель с двумя входами;

4) имеются внутренние контуры (показать какие) с единичными (неединичными обратными связями);

 
 


 

 

Рис.4

4.1. Формирователь сигнала главной обратной связи и чувствительный элемент.

Для формирования сигнала главной обратной связи используются следующие элементы системы: шариковинтовая передача, редуктор Р2, вращающийся трансформатор, работающий в фазовом режиме, преобразователь фаза-напряжение. Чувствительный элемент включает в себя преобразователь управляющего воздействия, элемент сравнения (усилитель с двумя входами для получения разности сигналов задания и сигнала регулируемой координаты ) и нормализатор сигнала ошибки. Структурная схема формирователя и чувствительного элемента приведена на рис. 5. На рисунке x(t) – функция времени, а не изображение переменной; W – передаточная функция.

 

Рис. 5. Структурная схема канала обратной связи и чувствительного элемента

Здесь приняты следующие обозначения:

- ПФ преобразователя управляющего воздействия в напряжение;

- ПФ шариковинтовой передачи;

- ПФ редуктора Р2;

- ПФ вращающегося трансформатора;

- ПФ преобразователя фаза-напряжение;

- ПФ нормализатора сигнала ошибки.

- угол поворота шариковинтовой передачи;

- угол порота выходной оси приборного редуктора Р2;

- фазовый сдвиг выходного напряжения вращающегося трансформатора относительно опорного напряжения (единица измерения - электрический градус, град*).

При выводе передаточных функций следует обеспечить одинаковую крутизну сигналов по управляющему воздействию и регулируемой координате. При этом следует иметь в виду:

1. общий коэффициент передачи этого звена должен быть равен единице;

2. максимальное напряжение в цепи сигналов задания и обратной связи - 10 В; оно соответствует величине максимального перемещения рабочего органа (полагаем, что измерительная система одноотсчетная);

3. максимальное напряжение, подаваемое на усилитель, реализующий элемент сравнения, составляет 10В; при этом величина ошибки в системе равна заданной по ТЗ величине кинетической ошибки;

4. преобразование сигналов в этих звеньях Безынерционное и без запаздывания.

Шариковинтовая передача (ШВП) как преобразующее звено в цепи обратной связи. При выводе ПФ следует иметь в виду, что здесь она преобразует линейное перемещение в угловое. При повороте на один оборот ШВП преобразуется линейное перемещение, соответствующее значению шага ходового винта ШВП. ПФ ШВП определяется, град/мм

.

Приборный редуктор Р2 обеспечивает заданную цену оборота вращающегося трансформатора . Под ценой оборота понимается линейное перемещение рабочего органа, при котором его ротор совершает один оборот, или поворачивается на угол 360 град. ПФ редуктора Р2 имеет вид:

. - понижающий

Вращающийся трансформатор преобразует угловое перемещение в сигнал. Он работает в фазовом режиме. При этом его выходное напряжение

.

Информационным сигналом этого звена является величина фазового сдвига выходного напряжения, т.е. относительно опорного. Следует иметь в виду, что коэффициент передачи вращающегося трансформатора, работающего в фазовом режиме, равен 1. Передаточная функция задается в виде: =1 град*/град .

Преобразователь-фаза напряжение. Выполнен многоотсчетным. Выходное напряжение 10 В. Передаточная функция находится по выражению, В/град*

.

Здесь - суммарный фазовый сдвиг, соответствующий максимальному перемещению . Он определяется как

.

Преобразователь напряжения сигнала задания. Выходное напряжение 10 В. Оно соответствует всему диапазону управляющего воздействия, т.е. величине максимального перемещения. Передаточная функция, В/мм

.

Передаточную функцию звеньев, формирующих сигнал обратной связи, вычисляем, В/мм

Следует иметь в виду, что крутизна сигналов управляющего воздействия g(t)и регулируемой координаты x(t)по цепи обратной связи должна быть одинаковой, то есть должно соблюдаться условие .

 

Элемент сравнения формирует сигнал ошибки . Передаточная функция элемента сравнения с учетом того, что преобразование безынерционное, будет .

Передаточная функция нормализатора сигнала ошибки. В техническом задании определена кинетическая ошибка системы. Так как рассматривается линейная система с астатизмом первого порядка, то в режиме слежения с заданной максимальной скоростью ошибка не может быть больше заданного значения . Поэтому, исходя из условий физической реализации системы, максимальное выходное напряжение нормализатора соответствует именно этому значению, и, в свою очередь, составляет стандартную величину 10 В.

Величина напряжения, соответствующего величине контурной ошибки на выходе чувствительного элемента, будет: .

Коэффициент передачи нормализатора определяется

Передаточная функция чувствительного элемента окончательно определяется, как передаточная функция пропорционального звена с коэффициентом передачи, В/мм.

4.2. Регулятор положения.

Вид и параметры регулятора положения определены в техническом задании (ТЗ). Это пропорциональное звено с передаточной функцией .

4.3. Усилитель с корректирующим звеном.

Вводится в прямой тракт для получения заданных динамических характеристик САУ. В результате синтеза необходимо определить вид и параметры этого звена. На предварительном этапе синтеза принимаем .

4.4. Регулятор скорости.

Вид и параметры регулятора скорости определены в ТЗ. Это пропорциональное звено с передаточной функцией .

4.5. Регулятор напряжения (тока).

Вид и параметры регулятора напряжения (тока) определены в ТЗ. Это

изодромное звено с передаточной функцией ,

где, .

4.6. Усилитель мощности

В качестве усилителя мощности используется тиристорный преобразователь.

По заданию: управляемый выпрямитель (УВ) (ЭП ПР «Универсал-5»):

Передаточная функция тиристорного преобразователя определяется в виде апериодического звена с чистым запаздыванием

, где .

Коэффициент передачи преобразователя определяется .

Постоянная времени преобразователя находится по выражению, с

.

Чистое запаздывание обусловлено физическими особенностями работы тиристорных преобразователей обеих типов. Для преобразователя типа УВ чистое запаздывание, с , где f - частота питания преобразователя; n - число фаз.

. ;

4.7. Исполнительный двигатель

В качестве исполнительного двигателя используется двигатель постоянного тока с независимым возбуждением из серии 4ПБ100S2. Технические данные двигателей серии 4ПБ100S2.

 

Рис.6. Двигатель постоянного тока унифицированной конструкции типа 4ПБ.

1-корпус; 2-магнитопровод статора; 3-щит подшипниковый передний;

4-сердечник якоря; 5-вентилятор; 6-кожух; 7-коробка выводов;

8-коллектор; 9-траверса.

Рис. 7. Системы возбуждения машин постоянного тока: независимая.

 

Типоразмер двигателя Номинальная мощность, кВт, при исполнении Напряжение, В Ток якоря, А, при исполнении Номинальная частота вращения, об/мин
4ПБ100S2        

При независимой системе возбуждения обмотка возбуждения питается от постороннего источника постоянного тока и ток возбуждения не зависит от режима работы и нагрузки машины. Генераторы с независимой системой возбуждения допускают регулирование напряжения практически от нуля до номинального. Изменение напряжения при увеличении нагрузки определяется только размагничивающим действием реакции якоря и увеличением падения напряжения на сопротивлении якорной цепи.

Рис. 8. Габаритные, установочные и присоединительные размеры двигателей типа 4ПБ конструктивного исполнения 100S2.

1. Выходной координатой двигателя является угол поворота вала двигателя. Тогда его передаточные функции записываются

, где, ,

, где , , , , , ,

, ,

 

;

; ;

; ; .

2. Выходной координатой двигателя является скорость (частота вращения). Тогда его передаточные функции записываются:

, ,

Регулируемой координатой САУ служит перемещение. Двигатель является интегрирующим звеном. При таком варианте использования ПФ двигателя

операцию интегрирования скорости согласно принципу суперпозиции, справедливому для линейных систем, следует отнести к одному из последующих звеньев, например к ШВП.

Так как синтезируемая система рассматривается как система подчиненного регулирования, выполненная по контурам, то используем второй вариант описания двигателя.

 

 

4.8. Силовой редуктор.

Силовой редуктор является трансформатором угла поворота, частоты вращения и передаваемого двигателем момента. Настоящая система синтезируется по управляющему воздействию.

Рис. 9. Габаритные и установочные размеры ВТ тип СКТ – 6465 и СКТ2 – 6465

Вращающиеся трансформаторы серии СКТ представляют собой трехобмоточную или четырехобмоточную машину.

Оптимизацию передаточного числа редуктора не проводим (эти вопросы будут рассматриваться в курсовом проекте по автоматизированному приводу). Считаем, что эта механическая передача выполнена идеально и имеет абсолютную жесткость. Тогда она описывается передаточной функцией пропорционального звена

.

Используем заданную по ТЗ единицу измерения частоты вращения вала двигателя об/мин. Определим соответствующую заданной скорости перемещения частоту вращения ходового винта, (мм/мин)/(мм/об),

 

 

4.9. Шариковинтовая передача

Отметим функции ШВП как звена САУ. Это звено является выходным звеном контура положения. Выходной координатой контура скорости является скорость, а контура положения - положение. С ШВП сочленен датчик обратной связи, замыкающий контур и всю систему по положению.

Поэтому при таком построении структурной схемы ШВП с учетом правил преобразования структурных схем линейных систем отнесем к этому звену две функции:

1) интегрирование входного сигнала - сигнала скорости;

2) преобразование углового перемещения в линейное.

Считаем, что ШВП выполнена идеально и имеет абсолютную жесткость. Тогда передаточная функция ШВП определяется, мм/(рад/с)

, где .

4.10. Нормализатор сигнала местной обратной связи по напряжению.

Контур по напряжению (току) замыкается местной обратной связью. Звено с передаточной функцией формирует сигнал, пропорциональный напряжению или току исполнительного двигателя. Это звено реализует единичную обратную связь данного контура. Для этого его выходное напряжение , соответствующее максимальному сигналу на выходе контура , должно соответствовать максимальному входному сигналу, которое составляет 10В. Для каждого из контуров этот коэффициент определяется следующим образом:

Для контура напряжения. Согласно комбинированной схеме силовой части (см. рис. 2) напряжение обратной связи снимается непосредственно с якоря двигателя. Для развязки цепей должен использоваться развязывающий усилитель с высоким входным сопротивлением и коэффициентом передачи, обеспечивающим единичную обратную связь. Тогда коэффициент передачи этого звена, реализующего единичную обратную связь контура, определяется, В/В

,

Для контура тока. Согласно комбинированной схеме силовой части напряжение обратной связи по току якоря двигателя снимается с шунта с сопротивлением . Для развязки цепей здесь также должен быть использован развязывающий усилитель с высоким входным сопротивлением и коэффициентом передачи, обеспечивающим единичную обратную связь. Тогда коэффициент передачи этого звена, реализующего единичную обратную связь контура, определяется, В/В: ,

где сопротивление шунта берется в пределах .

При определенных коэффициентах передачи звена в цепи обратной связи, реализуется коэффициент, равный единице, тогда на этапе синтеза данного контура обратная связь принимается единичной.

4.11. Тахогенератор.

Рис.10.Габаритные и установочные размеры двигатель – тахогенератора ДТ -6Б

В состав двигатель - тахогенератора ДТ - 6Б входят асинхронный управляемый двигатель и встроенный асинхронный тахогенератор

Выходное напряжение тахогенератора, соответствующее максимальной скорости (частоте вращения) двигателя , должно соответствовать максимальному входному сигналу контура и составляет 10 В. Если преобразование сигнала безынерционное, то тахогенератор описывается передаточной функцией пропорционального звена

,

.

Отметим также, что, как и для предыдущего контура, здесь реализуется коэффициент передачи обратной связи, равный единице. Тогда на этапе синтеза данного контура обратная связь принимается единичной.




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 1652; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.