КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Соотношение (3.13) получается из (3.10) приравниванием последнего к нулюКлассифицировать ограничения на активные и неактивные можно из анализа последней строки расширенной обратной базисной матрицы . Известно, что , где - оптимальные значения двойственных переменных. Известно также, что Следовательно, если , то соответствующее i-ое ограничение является активным (т.е. любое изменение b[i] приводит к изменению оптимального значения целевой функции ЗЛП), в противном случае оно является неактивным. После проведения вариации величины b[k] меньше предельной для получения нового оптимального решения достаточно скорректировать вектор соответствии с формулой (3.10). Если же осуществляется вариация больше предельной, то после пересчета вектора среди новых значений первых m его компонент появятся отрицательные, т.е. прежнее базисное решение станет недопустимым. При этом прежний базис станет сопряженным, т.е. таким, которому соответствуют значения двойственных переменных, определяющие допустимое базисное решение двойственности ЗЛП.
Дата добавления: 2014-12-27; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |