КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Развитие электроэнергетики России
В первые годы развития электроэнергетики России все электростанции работали раздельно. Даже электростанции, расположенные в крупных городах (Петербурге, Москве), работали на собственные, не связанные между собой, электрические сети, нередко выполненные на различные системы тока — постоянный, однофазный переменный, трехфазный переменный при различных частотах (20; 40; 42,5; 50 Гц) и различных напряжениях. В 1913 г. в России было всего 109 км воздушных электрических сетей напряжением выше 10 кВ. В 1912 г. в 70 км от Москвы на торфяных болотах было начато строительство первой районной электростанции «Электропередача»; была также построена линия электропередачи напряжением 70 кВ длиной около 70 км до Измайловской подстанции. Развитие электрических сетей, разрушенных в годы Гражданской войны, началось примерно с 1920 г. в соответствии с планом ГОЭЛРО. Этим планом была предусмотрена централизация электроснабжения всего народного хозяйства путем строительства крупных электростанций и электрических сетей и последовательного объединения электростанций в районные и межрайонные энергетические системы. Уже в те годы для специалистов было ясно, что объединение электростанций в энергетические системы сулит несомненные преимущества. К основным преимуществам такого объединения следует отнести: Ø наилучшее использование установленной мощности агрегатов электростанций, повышение их экономической эффективности в целом; Ø снижение суммарного максимума нагрузки объединяемых систем; Ø уменьшение суммарного необходимого резерва мощности; Ø облегчение работы системы при авариях и ремонтах; Ø увеличение единичной мощности агрегатов, устанавливаемых на электростанциях и подстанциях. В связи с увеличением потребления электрической энергии, появилась необходимость передачи ее на дальние расстояния, что естественно требовало повышения напряжения. Последнее обусловило значительное развитие электрических сетей для передачи и распределения электроэнергии. Так, например, мощность Московской энергосистемы к 1935 г. достигла 900 МВт при длине электрических сетей 1900 км напряжением 110 кВ; мощность Уральской энергосистемы, протянувшейся на 1000 км от Соликамска до Магнитогорска, достигла 650 МВт. Впервые было применено напряжение 220 кВ в Ленинградской энергосистеме, где в 1933 г. была построена электропередача протяженностью 240 км (Нижне-Свирская ГЭС – Ленинград). Впоследствии это напряжение было использовано и в других энергосистемах, а также при сооружении линий межсистемных связей. Рост мощностей и дальности передачи электроэнергии, необходимость повышения надежности электроснабжения потребовали решения ряда новых технических проблем. Особо важное значение при возрастающей дальности передачи электроэнергии получили вопросы расчетов устойчивости параллельной работы электростанций и способов обеспечения этой устойчивости. На основе глубокого изучения переходных процессов в электрических системах была разработана методика расчетов, проведены исследования в электрических системах. Были изучены вопросы аварийного регулирования турбин, исследованы возможности повышения мощности и дальности передачи при помощи автоматического регулирования возбуждения синхронных машин; был создан электронный регулятор напряжения. В эти годы были найдены реальные средства повышения пределов динамической устойчивости: форсировка возбуждения синхронных генераторов, применение аварийной разгрузки по частоте (АЧР). Во второй половине 30-х годов XX в. уже велась разработка вопросов, связанных с возможностью передачи электроэнергии от будущей Куйбышевской ГЭС в район Москвы на напряжении 380–400 кВ; в Ленинградском энергофизическом институте была построена опытная трехфазная линия 500 кВ, на которой проводились исследования на дальнюю перспективу – использование более высоких напряжений для передачи электроэнергии. В годы Великой Отечественной войны энергосистемам и электрическим сетям, оказавшимся в зоне военных действий, был нанесен огромный ущерб – было разрушено более 10 тыс. км линий электропередачи напряжением более 10 кВ. Но уже в конце 1941 г. начались восстановительные работы, и в 1945 г. общая протяженность электрических сетей превысила довоенный уровень. Наибольшее развитие энергосистем и их объединение происходят в 50-х годах XX в. в результате сооружения мощных электростанций на реках Волге, Каме и строительства первых линий электропередачи 400 кВ, переведенных впоследствии на напряжение 500 кВ. В связи с большим ростом уровня энергетики оказалось целесообразным строительство крупных тепловых электростанций с агрегатами большой единичной мощности, что создало необходимые условия для построения крупных объединенных энергосистем. Сооружение крупных электростанций, объединение энергосистем требовали еще большей пропускной способности, чем пропускная способность линий 500 кВ. Поэтому с этим в ряде ведущих промышленно развитых стран (СССР, США, Канаде) велись интенсивные работы по дальнейшему повышению пропускной способности электропередач и связанному с этим повышению их напряжения. В 1967 г. была введена в эксплуатацию первая опытно-промышленная электропередача 750 кВ Конаковская ГРЭС – Москва протяженностью 90 км, а уже к 1985 г. протяженность линий электропередачи этого напряжения составила более 6 тыс. км. Рост мощностей электростанций (тепловых и атомных – до 4 млн. кВт, гидроэлектростанций – до 6 млн. кВт), увеличение дальности передачи электроэнергии потребовали внедрения линий электропередачи нового класса напряжений переменного тока – 1150 кВ, а также строительства линий электропередачи постоянного тока напряжением 1500 кВ. Первые линии электропередачи новой ступени напряжения переменного тока 1150 кВ были введены в 1985 г. на участках Экибастузская ГРЭС – Кокчетав – Кустанай. В результате в нашей стране сложились две шкалы номинальных напряжений воздушных линий электропередачи – 110 – 150 – 330 – 750 кВ и 110 – 220 – 500 – 1150 кВ. Каждая последующая ступень в этих шкалах превышает предыдущую примерно в 2 раза, что позволяет повысить пропускную способность линий примерно в 4 раза. Следует отметить, что повышение номинального напряжения линий электропередачи имеет и экономические преимущества, так как при этом резко снижается удельная (на 1 км) себестоимость передачи электроэнергии и сужается коридор, отводимый под прокладку трасс электропередач. Первая шкала напряжений получила распространение в северо-западных областях России, на Украине и на Северном Кавказе, вторая – в центральных областях и на всей территории России к востоку от Москвы. В настоящее время линии 110 – 150 – 220 кВ используются, главным образом, в районных распределительных сетях для передачи электроэнергии к крупным узлам нагрузки. Электропередачи 330–500–750–1150 кВ, по которым может быть передана мощность от 350 до 5000 МВт, решают задачи системного характера. Они используются для создания мощных межсистемных и внутрисистемных связей, передачи электроэнергии от удаленных электростанций, например атомных, в приемные системы. Рост пропускной способности и номинального напряжения электропередач давался нелегко. Каждый последующий шаг требовал решения сложных научно-технических задач, и их сложность возрастала по мере роста напряжения линий. К числу основных проблем, требовавших решения, можно отнести следующие: Ø потери мощности и энергии на корону, а также радиопомехи, излучаемые линией; Ø изоляция и ограничения перенапряжений; Ø большие сечения проводов при больших передаваемых мощностях; Ø компенсация зарядной мощности линий; Ø увеличение токов коротких замыканий в связываемых системах; Ø повышение пропускной способности электропередач и устойчивости параллельной работы электростанций; Ø экология, что связано с возрастанием напряженности электрического поля под линией и его отрицательным воздействием на живые организмы; Ø разработка коммутационной аппаратуры и многие др. В 1994 г. в основном завершился процесс разгосударствления предприятий топливно-энергетического комплекса. При этом государственные предприятия и организации изменили форму собственности и были преобразованы в акционерные общества. В электроэнергетике было создано Российское акционерное общество энергетики и электрификации – РАО ЕЭС России, в уставной капитал которого переданы в качестве государственного вклада: Ø основные системообразующие линии электропередачи, образующие единую энергетическую систему России; Ø средства управления режимами электроэнергетических систем; Ø 51 % акций крупнейших электростанций; Ø 49 % акций каждого регионального акционерного общества энергетики; Ø научно-исследовательские и проектные организации отрасли. В перспективе до 2010 г., наряду с разработкой высокоэффективного производства электроэнергии программой «Энергетическая стратегия России», предусмотрена разработка столь же эффективных систем ее передачи, распределения и использования. В решении этих задач исключительно велика роль разработок в области электрофизики, обеспечивающих в первую очередь: Ø создание линий электропередачи сверх- и ультравысокого напряжения и принципиально нового оборудования для них; Ø разработку теории предельного состояния электрических генераторов; Ø создание новых силовых преобразовательных устройств, полупроводниковых приборов для коммутации токов мегаамперного диапазона. Решение этих задач должно сочетаться с углубленным анализом вопросов развития, функционирования, устойчивости и надежности Единой энергетической системы России, ее связей с электроэнергетическими системами других стран, в первую очередь стран СНГ.
Дата добавления: 2014-12-27; Просмотров: 765; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |