КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Необходимые сведения из теории
Исходные статистические данные. Таблица 5. Замечание. В статистической таблице представлены данные статистической отчетности по судимости в Российской Федерации за 2008 г. из формы № 10.1 «Результаты рассмотрения уголовных дел с учетом сложения наказаний» Судебного департамента по судам общей юрисдикции (без военных судов). В строках число осужденных учтено по основной статье приговора, вступившего в законную силу (по наиболее тяжкой статье), а в графах – по срокам лишения свободы в итоговом наказании (по совокупности преступлений или приговоров). Поэтому имеются значения по срокам лишения свободы, превышающим предел, допустимый по определенной категории тяжести преступлений.
Средняя величина - это обобщающий показатель, который характеризует качественно однородную совокупность по определенному количественному признаку. Например, средний возраст лиц, осужденных за кражу. Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи, с чем каждый вариант приходится умножать на соответствующую численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту называют статистическим весом. Средняя арифметическая простая – самый распространенный вид средней. Она равна сумме отдельных значений признака, деленной на общее число этих значений: , где x1,x2, …,xN – индивидуальные значения варьирующего признака (варианты), а N – число единиц совокупности. Средняя арифметическая взвешенная применяется в тех случаях, когда данные представлены в виде рядов распределения или группировок. Она вычисляется как сумма произведений вариантов на соответствующие им частоты, деленная на сумму частот всех вариантов: , где xi – значение i–й варианты признака; fi – частота i–й варианты. Таким образом, каждое значение варианты взвешивается по своей частоте, поэтому частоты иногда называют статистическими весами. Замечание. Если вычисление средней величины производят по данным, сгруппированным в виде интервальных рядов распределения, то сначала надо определить серединные значения каждого интервала х'i, после чего рассчитать среднюю величину по формуле средней арифметической взвешенной, где вместо xi используется х'i. Вариация – это различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Показатели вариации используются для установления типичности средней величины, т. е. насколько точно характеризует средняя данную совокупность по определенному признаку. К основным показателям вариации относятся следующие: 1) дисперсия; 2) среднее квадратическое отклонение; 3) коэффициент вариации. Дисперсия определяется как средняя из отклонений, возведенных в квадрат. Простая дисперсия для не сгруппированных данных: . Взвешенная дисперсия для вариационного ряда: Замечание. На практике для вычисления дисперсии лучше использовать следующие формулы: Для простой дисперсии . Для взвешенной дисперсии
Среднее квадратическое отклонение - это корень квадратный из дисперсии: Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем, однороднее совокупность и тем лучше средняя арифметическая отражает собой всю совокупность. Коэффициент вариации – выраженное в процентах отношение среднего квадратического отклонения к средней арифметической: Коэффициент вариации используют не только для сравнительной оценки вариации разных признаков или одного и того же признака в различных совокупностях, но и для характеристики однородности совокупности. Статистическая совокупность считается количественно однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному распределению).
Дата добавления: 2014-12-23; Просмотров: 471; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |