Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кластеры




Вычислительные системы, как мощные средства обработки заданий пользователей, широко используются не только автономно, но и в сетях ЭВМ в качестве серверов.

С увеличением размеров сетей и их развитием возрастают плотности информационных потоков, нагрузка на средства доступа к сетевым ресурсам и на средства обработки заданий. Круг задач, решаемый серверами, постоянно расширяется, становится многообразным и сложным. Чем выше ранг сети, тем более специализированными они становятся. Администраторы сетей должны постоянно наращивать их мощь и количество, оптимизируя характеристики сети под возрастающие запросы пользователей.

В сетях первых поколений серверы строились на основе больших и очень дорогих ЭВМ (mainframe), выпускаемых целым рядом компаний: Digital Equipment, Tandem, влившихся в корпорацию Compaq, IBM, Hewlett-Packard. Все они работали под управлением ОС Unix и способны были объединяться для совместной работы.

Как и во всякой развивающейся технологии, сложные универсальные серверы различных фирм-изготовителей должны были уступить место стандартным массовым решениям. Успехи микроэлектроники, повсеместное применение ПК, широкое распространение Internet/Intranet-технологий позволили перейти к более простым и дешевым системам, например, на основе платформы Wintel. Опыт создания серверов на основе SMP- и MPP-структур показал, что они не обеспечивают хорошей адаптации к конкретным условиям функционирования, остаются дорогими и сложными в эксплуатации.


Одним из перспективных направлений здесь является кластеризация, то есть технология, с помощью которой несколько серверов, сами являющиеся вычислительными системами, объединяются в единую систему более высокого ранга для повышения эффективности функционирования системы в целом.

 

Целями построения кластеров служат:

– улучшение масштабируемости (способность к наращиванию мощности);

– повышение надежности и готовности системы в целом;

– увеличение суммарной производительности;

– эффективное перераспределение нагрузок между компьютерами кластера;

– эффективное управление и контроль работы системы и т.п.

Улучшение масштабируемости, или способность к наращиванию мощности предусматривает, что все элементы кластера имеют аппаратную, программную и информационную совместимость. В сочетании с простым и эффективным управлением изменение оборудования в идеальном кластере должно обеспечивать соответствующее изменение значений основных характеристик: добавление новых процессоров, дисковых систем должно сопровождаться пропорциональным ростом производительности, надежности и т.п. В реальных системах эта зависимость имеет нелинейный характер.

Масштабируемость SMP- и MPP-структур достаточно ограничена. При большом числе процессоров в SMP-структурах возрастает число конфликтов при обращении к общей памяти, а в MPP-структурах плохо решаются задачи преобразования и разбиения приложений на отдельные задания процессорам. В кластерах же администраторы сетей получают возможность увеличивать пропускную способность сети за счет включения в него дополнительных серверов, даже уже из числа работающих, с учетом того, что балансировка и оптимизация нагрузки будут выполняться автоматически.

Следующей важной целью создания кластера является повышение надежности и готовности системы в целом. Именно эти качества способствуют популярности и развитию кластерных структур. Избыточность, изначально заложенная в кластеры, способна их обеспечить. Основой этого служит возможность каждого сервера кластера работать автономно, но в любой момент он может переключиться на выполнение работ другого сервера в случае его отказа.

Коэффициент готовности систем рассчитывается по формуле:

 

,

 

где Tp – полезное время работы системы;

To – время отказа и восстановления системы, в течение которого она не могла выполнять свои функции.

 

Большинство современных серверов имеет 99-процентную готовность. Это означает, что около четырех дней в году они не работают. Подчеркнем, что готовность 99,9%, достигаемая обычно спаркой серверов – основного и резервного – означает годовой простой около 500 минут; 99,999% – пять минут, а 99,9999% – 30 секунд.

Появление критически важных приложений в областях бизнеса, финансов, телекоммуникаций, здравоохранения и др. требует обеспечения коэффициента готовности не менее, чем «заветные пять девяток» и даже выше.

Повышение суммарной производительности кластера, объединяющего несколько серверов, обычно не является самоцелью, а обеспечивается автоматически. Ведь каждый сервер кластера сам является достаточно мощной вычислительной системой, рассчитанной на выполнение им всех необходимых функций в части управления соответствующими сетевыми ресурсами. С развитием сетей все большее значение приобретают и распределенные вычисления. При этом многие компьютеры, в том числе и серверы, могут иметь не очень большую нагрузку. Свободные ресурсы домашних компьютеров, рабочих станций локальных вычислительных сетей, да и самих серверов можно использовать для выполнения каких-либо трудоемких вычислений. При этом стоимость создания подобных вычислительных кластеров очень мала, так как все их составные части работают в сети и только при необходимости образуют виртуальный (временный) вычислительный комплекс.

Совокупные вычислительные мощности кластеров могут быть сравнимы с мощностями суперЭВМ и даже превышать их при неизмеримо меньшей стоимости. Такие технологии применительно к отдельным классам задач хорошо отработаны. Например, существует задача анализа сигналов, принимаемых радиотелескопами, с целью поиска внеземных цивилизаций; имеется проект distributed.net, реализующий алгоритм дешифрования, и др. Круг подобных задач не очень широк, но число одновременно привлекаемых компьютеров для этих целей может быть громадным: десятки, сотни и даже тысячи.

Работа кластера под управлением единой операционной системы позволяет оперативно контролировать процесс вычислений и эффективно перераспределять нагрузки на компьютеры кластера.

Управление такими проектами требует создания специального клиентского и серверного программного обеспечения, работающего в фоновом режиме. Компьютеры при этом периодически получают задания от сервера, включаются в работу и возвращают результаты обработки. Последние версии браузеров еще более упрощают процесс взаимодействия, так как на клиентской машине можно активизировать выполнение различных программ-сценариев (скриптов).

Эффективное управление и контроль работы системы подразумевает возможность работы отдельно с каждым узлом, отключения вручную или программно его для модернизации или ремонта с последующим возвращением его в работающий кластер. Эти операции скрыты от пользователей, которые просто не замечают их. Кластерное ПО, интегрированное в операционные системы серверов, позволяет работать с узлами как с единым пулом ресурсов (Single System Image – SSI), внося необходимые общие изменения с помощью одной операции для всех узлов.

Какие же средства имеются для построения кластеров?

Существуют различные методы и средства построения надежных систем с резервированием. Они рассматриваются как по отношению к средствам обработки, так по отношению к средствам хранения данных. Например, есть источники бесперебойного питания и резервные блоки питания, способные устранять влияние сбоев и отказов в электроснабжении. Имеются также дисковые массивы RAID, обеспечивающие непрерывную обработку запросов к информации, хранящейся на дисках, даже в случае выхода из строя одного или нескольких из них. Но более интересны средства обработки.

Кластеры объединяют несколько серверов под единым управлением. Все новые серверы, как правило, являются многопроцессорными и относятся к SMP-структурам, что обеспечивает возможность многоступенчатого переключения нагрузки отказавшего элемента как внутри кластера, так и внутри сервера. Существуют серверы с различным количеством процессоров (от двух до шестнадцати). Фирма Sun работает даже над созданием 64-процессорной SMP-модели сервера. IBM предполагает с появлением микропроцессора Itanium II выпустить SMP-систему, рассчитанную на 16 процессоров. Напротив, фирма Dell считает, что применение более восьми процессоров в SMP-структуре применять нецелесообразно из-за трудностей преодоления конфликтов при обращении их к общей оперативной памяти.

Большой интерес к построению кластеров проявляет фирма Microsoft. В связи широкой популярностью операционных систем Windows NT и старше, предназначенных для управления сетями крупных предприятий, появились различные варианты кластерного обеспечения. Предполагается, что оно будет поддерживать до 16 и более узлов в кластере.

Унификация инженерно-технических решений предполагает соответственно и стандартизацию аппаратных и программных процедур обмена данными между серверами. Для передачи управляющей информации в кластере используются специальные магистрали, имеющие более высокие скорости обмена данными. В качестве такого стандарта предлагается интеллектуальный ввод-вывод (Intelligent Input/Output, I2O). Спецификация I2O определяет унифицированный интерфейс, освобождая процессоры и их системные шины от обслуживания периферии.

Как и у любой новой технологии, у кластеризации имеются свои недостатки:

– задержки разработки и принятия общих стандартов;

– большая доля нестандартных и закрытых разработок различных фирм, затрудняющих их совместное использование;

– трудности управления одновременным доступом к файлам;

– сложности с управлением конфигурацией, настройкой, развертыванием, оповещениями серверов о сбоях и т.п.

 

РАЗДЕЛ 2. КОМПЬЮТЕРНЫЕ СЕТИ.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 721; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.