Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Протоколы и технологии локальных сетей




В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня – Ethernet – рассчитан на топологию «общая шина», когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring – на топологию «звезда». При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени (в режиме TDH). Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ-го века, наряду с положительными имели и отрицательные последствия, главные из которых – ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией («общая шина», «кольцо», «звезда») имеется только один путь передачи информации, производительность сети ограничивается пропускной способностью этого пути, а надежность сети – надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специальных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС («шина», «кольцо») превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети – с помощью других протоколов.

В развитии локальных сетей, кроме отмеченного, наметились и другие тенденции:

· отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;

· появление нового режима работы в ЛКС при использовании коммутаторов – полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах.

Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС – физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях, как уже отмечалось, канальный уровень разделен на два подуровня:

· логической передачи данных (LLC);

· управления доступом к среде (МАС).

Протоколы подуровней МАС и LLC взаимно независимы, т. е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC, и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC – организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС, реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Протокол LLC. Для технологий ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС. По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Различают три режима работы протокола LLC:

· LLC1 – процедура без установления соединения и без подтверждения. Это дейтаграммный режим работы. Он используется обычно тогда, когда восстановление данных после ошибок и упорядочение данных осуществляется протоколами вышележащих уровней;

· LLC2 – процедура с установлением соединения и подтверждением. По этому протоколу перед началом передачи между взаимодействующими РС устанавливается логическое соединение и, если это необходимо, выполняются процедуры восстановления кадров после ошибок и упорядочения потока кадров в рамках установленного соединения (протокол работает в режиме скользящего окна, используемом в сетях ARQ). Логический канал протокола LLC2 является дуплексным, т. е. данные могут передаваться одновременно в обоих направлениях;

· LLC3 – процедура без установления соединения, но с подтверждением. Это дополнительный протокол, который применяется, когда временные задержки (например, связанные с установлением соединения) перед отправкой данных не допускаются, но подтверждение о корректности приема данных необходимо. Протокол LLC3 используется в сетях, работающих в режиме реального времени по управлению промышленными объектами.

Указанные три протокола являются общими для всех методов доступа к передающей среде, определенных стандартами IEEE 802.Х.

Кадры подуровня LLC по своему назначению делятся на три типа – информационные (для передачи данных), управляющие (для передачи команд и ответов в процедурах LLC2) и ненумерованные (для передачи ненумерованных команд и ответов LLC1 и LLC2).

Все кадры имеют один и тот же формат: адрес отправителя, адрес получателя, контрольное поле (где размещается информация, необходимая для контроля правильности передачи данных), поле данных и два обрамляющих однобайтовых поля «Флаг» для определения границ кадра LLC. Поле данных может отсутствовать в управляющих и ненумерованных кадрах. В информационных кадрах, кроме того, имеется поле для указания номера отправленного кадра, а также поле для указания номера кадра, который отправляется следующим.

Технология Ethernet (стандарт 802.3). Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают более 5 миллионов ЛКС. Имеется несколько вариантов и модификаций технологии Ethernet, составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Все эти варианты и модификации отличаются типом физической среды передачи данных.

Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде – метод случайного доступа CSMA/CD. Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и используется для передачи данных между любыми двумя узлами сети. Такой метод доступа носит вероятностный характер: вероятность получения в свое распоряжение среды передачи зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способность резко падает.

Полезная пропускная способность сети – это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. При передаче кадров минимальной длины
(72 байта вместе с преамбулой) максимально возможная пропускная способность сегмента Ethernet составляет 14880 кадр/с, а полезная пропускная способность – всего 5,48 Мбит/с, что немного превышает половину номинальной пропускной способности – 10 Мбит/с. При передаче кадров максимальной длины (1518 байт) полезная пропускная способность равна 9,76 Мбит/с, что близко к номинальной скорости протокола. Наконец, при использовании кадров средней длины с полем данных в 512 байт, полезная пропускная способность равна 9,29 Мбит/с, т. е. также мало отличается от предельной пропускной способности в 10 Мбит/с. Следует учесть, что такие скорости достигаются только при отсутствии коллизий, когда двум взаимодействующим узлам другие узлы не мешают. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.

Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически. В качестве примера приведем структуру кадра 802.3/LLC.

Такой кадр имеет следующие поля:

· поле преамбулы – состоит из семи синхронизирующих байт 10101010, которые используются для реализации манчестерского кодирования;

· начальный ограничитель кадра – состоит из одного байта 10101011 и указывает на то, что следующий байт – это первый байт заголовка кадра;

· адрес назначения – длина его 6 байт, он включает признаки, по которым устанавливает тип адреса – индивидуальный (кадр отправляется одной РС), групповой (кадр отправляется группе РС), широковещательный (для всех РС сети);

· адрес источника (отправителя) – длина его 2 или 6 байт;

· длина поля данных – 2-байтовое поле, определяющее длину поля данных в кадре;

· поле данных – длина его от 0 до 1500 байт. Если длина этого поля меньше 46 байт, то используется так называемое поле заполнения, чтобы дополнить кадр до минимального допустимого значения в 46 байт;

· поле заполнения – длина его такая, чтобы обеспечить минимальную длину поля данных в 46 байт (это необходимо для корректной работы механизма обнаружения ошибок). Поле заполнения в кадре отсутствует, если длина поля данных достаточна;

· поле контрольной суммы – состоит из 4 байт и содержит контрольную сумму, которая используется на приемной стороне для выявления ошибок в принятом кадре.

В зависимости от типа физической среды по стандарту IEEE 802.3 различают следующие спецификации:

· 10Base-5 – толстый коаксиальный кабель (диаметр 0,5 дюйма), максимальная длина сегмента сети 500 метров;

· 10Base-2 – тонкий коаксиальный кабель (диаметр 0,25 дюйма), максимальная длина сегмента без повторителей 185 метров;

· 10 Base-T – неэкранированная витая пара, образующая звездообразную топологию на основе концентратора. Расстояние между концентратором и РС – не более 100 метров;

· 10Base-F – волоконно-оптический кабель, образующий звездообразную топологию. Расстояние между концентратором и РС – до 1000 м и 2000 м для различных вариантов этой спецификации.

В этих спецификациях число 10 обозначает битовую скорость передачи данных (10 Мбит/с), слово Base – метод передачи на одной базовой частоте 10 МГц, последний символ (5, 2, Т, F) – тип кабеля.

Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:

· номинальная пропускная способность – 10 Мбит/с;

· максимальное число РС в сети – 1024;

· максимальное расстояние между узлами в сети – 2500 м;

· максимальное число коаксиальных сегментов сети – 5;

· максимальная длина сегмента – от 100 м (для 10Base-T) до 2000 м (для 10Base-F);

· максимальное число повторителей между любыми станциями сети – 4.

Технология Token Ring (стандарт 802.5). Здесь используется разделяемая среда передачи данных, состоящая из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ, основанный на передаче станциям права на использование кольца в определенном порядке. Это право предается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером – от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.

В сетях Token Ring в качестве физической среды передачи данных используются экранированная и неэкранированная витая пара и волоконно-оптический кабель. Сети работают с двумя битовыми скоростями – 4 и 16 Мбит/с, причем в одном кольце все РС должны работать с одной скоростью. Максимальная длина кольца – 4 км, а максимальное количество РС в кольце – 260. Ограничения на максимальную длину кольца связаны со временем оборота маркера по кольцу. Если в кольце 260 станций и время удержания маркера каждой станцией равно 10 мс, то маркер после совершения полного оборота вернется в активный монитор через 2,6 с. При передаче длинного сообщения, разбиваемого, например на 50 кадров, это сообщение будет принято получателем в лучшем случае (когда активной является только РС-отправитель) через 260 с, что для пользователей не всегда приемлемо.

Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайт для сетей 4 Мбит/с и 16 Кбайт для сетей 16 Мбит/с.

В сетях 16 Мбит/с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера (ETR): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно, и в этом случае в каждый данный момент генерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут только ретранслировать чужие кадры.

Технология Token Ring существенно сложнее технологии Ethernet. В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций (активный монитор) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора, выбирается новый активный монитор и процедура инициализации кольца повторяется.

Стандарт Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM, которая является законодателем мод в этой технологии) изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU, т. е. устройствами многостанционного доступа. Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).

Для сетей Token Ring характерна звездно-кольцевая топология: РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).

Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии (HSTR), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.

Технология FDDI. Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель. Она появилась в 1988 г. и ее официальное название – оптоволоконный интерфейс распределенных данных (Fiber Distributed Data Interface, FDDI). В настоящее время в качестве физической среды, кроме волоконно-оптического кабеля, применяется неэкранированная витая пара.

Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.

Существует значительная преемственность между технологиями Token Ring и FDDI. Основные идеи технологии Token Ring восприняты и получили совершенствование и развитие в технологии FDDI, в частности, кольцевая топология и маркерный метод доступа.

В сети FDDI для передачи данных используются два оптоволоконных кольца, образующих основной и резервный пути передачи между РС. Станции сети подключаются к обоим кольцам. В нормальном режиме задействовано только основное кольцо. В случае отказа какой-либо части основного кольца оно объединяется с резервным кольцом, вновь образуя единое кольцо (это режим «свертывания» колец) с помощью концентраторов и сетевых адаптеров. Наличие процедуры «свертывания» при отказах – основной способ повышения отказоустойчивости сети. Существуют и другие процедуры для определения отказов в сети и восстановления ее работоспособности.

Основное отличие маркерного метода доступа к передающей среде, используемого в сети FDDI, от этого метода в сети Token Ring, заключается в том, что в сети FDDI время удержания маркера является постоянной величиной только для синхронного трафика, который критичен к задержкам передачи кадров. Для асинхронного трафика, не критичного к небольшим задержкам передачи кадров, это время зависит от загрузки кольца: при небольшой загрузке оно увеличивается, а при большой – может уменьшаться до нуля. Таким образом, для асинхронного трафика метод доступа является адаптивным, хорошо регулирующим временные перегрузки сети. Механизм приоритетов кадров отсутствует. Считается, что достаточно разделить трафик на два класса – синхронный, который обслуживается всегда (даже при перегрузках кольца), и асинхронный, обслуживаемый при малой загрузке кольца. Станции FDDI применяют алгоритм раннего освобождения маркера, как это сделано в сети Token Ring со скоростью 16 Мбит/с. Синхронизация сигналов обеспечивается применением биполярного кода NRZI.

В сети FDDI выделенный активный монитор отсутствует, все станции и концентраторы равноправны, и при обнаружении отклонений от нормы они осуществляют повторную инициализацию сети и, если это необходимо, ее реконфигурацию.

Результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring [39] приведены в табл. 8.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 2059; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.