КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вычисление ошибки выборки
Практическая реализация. Стратифицированная (районированная) выборка. При проведении стратифицированного отбора, генеральная совокупность сначала разбивается на группы (страты) по какому-либо признаку. Далее уже в этих выделенных группах проводится случайная или механическая выборка. Стратифицированная выборка может быть пропорциональной объему группы (в этом случае каждая страта имеет одинаковую долю в выборке) или непропорциональной (в этом случае доля страты в выборке зависит от доли этой страты в генеральной совокупности); также она может проводиться пропорционально колебанию признака в группах[11]. Например, всех представителей генеральной совокупности можно разделить по полу, и затем провести случайный отбор среди мужчин и женщин. Если мы отберем 50% мужчин и 50% женщин, то это будет пропорциональный отбор. В данном случае мы исходим из того, что мужчин и женщин в генеральной совокупности примерно поровну, а большей точности для нашего исследования не требуется. Если же мы отберем такой же процент мужчин и женщин, как в генеральной совокупности (например, 49% мужчин и 51% женщин), то это будет непропорциональный отбор. А если мы знаем, что рассматриваемый нами признак (например, количество выкуриваемых за день сигарет), среди мужчин колеблется несильно, т.е. среди мужчин достаточно мало совсем не курящих и злостных курильщиков, в то время как у женщин наблюдается обратная ситуация, то, чтобы добиться необходимой точности оценки количества выкуриваемых за день сигарет при тех же затратах на проведение опроса, можно опросить меньше мужчин, и за счет этого увеличить число опрашиваемых женщин. Это делается потому, что в данном случае получить оценку количества выкуриваемых за день сигарет у женщин с необходимой точностью является более трудной задачей (из-за сильного колебания признака), чем для мужчин. Этот пример - иллюстрация отбора пропорционально колебанию признака в группах. Формулы для расчета ошибки репрезентативности при пропорциональном стратифицированном отборе даны в таблице 7. Таблица SEQ Таблица \* ARABIC 7. Формулы ошибки репрезентативности для стратифицированной выборки (пропорциональный отбор). [3, 22]
Где: - средняя из внутригрупповых дисперсий, где - дисперсия в группе i, а - численность группы i. - средняя величина доли признака, - доля признака в группе i,
Ясно, что доверительный интервал при стратифицированной выборке будет меньше (выборка точней), чем при случайной выборке, т.к. средняя из внутригрупповых дисперсий меньше общей дисперсии[12]. Строгое математическое доказательство того, почему при стратифицированной выборке мы имеем право вместо общей дисперсии ставить среднюю внутригрупповых дисперсий и тем самым уменьшать величину доверительного интервала при сохранении той же надежности, можно найти в [5, 104-107]. На <качественном> же уровне можно сказать следующее. Если представить доверительный интервал как дисперсию средней или как ошибку оценки этой средней ( ), то при стратифицированном отборе эта ошибка оценки может быть выражена как <взвешенное среднее ошибок, сделанных при оценивании по отдельным слоям> [5, 106], что и будет средней из внутригрупповых дисперсий. То есть нам достаточно обеспечить несмещенную оценку всех групповых средних, чтобы обеспечить несмещенную оценку общей средней. А точность оценки групповых средних зависит только от дисперсии внутри наших групп и количества опрошенных. Другая составляющая общей дисперсии (межгрупповая дисперсия) не играет здесь никакой роли, т.к. если мы обеспечим попадание групповых средних в свои доверительные интервалы (которые зависят от внутригрупповых дисперсий), то мы автоматически добиваемся попадания общей средней в свой доверительный интервал. Иными словами, за счет моделирования выборки мы <покрываем> межгрупповую дисперсию (исключаем возможность случайной ошибки в оценке межгрупповой дисперсии). Если же наше конструирование не будет соответствовать реальности, либо группы в самой генеральной совокупности окажутся размытыми[13], то величина межгрупповой дисперсии будет минимальной, что сводит на нет преимущества стратифицированной выборки. Таким образом, получаем, что дисперсия средней и, значит, величина доверительного интервала зависит лишь от внутригрупповых дисперсий. При пропорциональном отборе вместо общей дисперсии берется средняя внутригрупповых дисперсий, а при непропорциональном отборе - сумма взвешенных по объему всей генеральной совокупности внутригрупповых дисперсий. Теперь перейдем к непропорциональной выборке, т.е. выборке с неодинаковой удельной долей страт. В следующей таблице даны формулы ошибки репрезентативности для такой выборки. Таблица SEQ Таблица \* ARABIC 8. Формулы ошибки репрезентативности для стратифицированной выборки (непропорциональный отбор). [3, 24]
Где: - объем страты в генеральной совокупности. - объем страты в выборке. Как видно из формул, при непропорциональном отборе вместо средней внутригрупповых дисперсий берется сумма взвешенных по объему генеральной совокупности внутригрупповых дисперсий. Стратифицированная выборка может проводиться пропорционально дисперсии признака в группах. Формулы ошибки репрезентативности для этого случая представлены в таблице 9. Таблица SEQ Таблица \* ARABIC 9. Формулы ошибки репрезентативности для стратифицированной выборки (пропорционально колеблемости признака в группах). [3, 26]
Эти формулы являются просто преобразованными формулами ошибки репрезентативности для непропорционального отбора. Преобразование производится путем подстановки вместо выражения, которое будет представлено немного ниже.
Дата добавления: 2014-12-29; Просмотров: 369; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |