Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Взаимосвязь инженерной и научной деятельности 2 страница




Инженерное решение - это решение практических технических проблем, имеющее творческий характер, реализуемое не только в определенных технических образцах, но и в масштабах общественного производства. Оно научно обосновано и учитывает накопленный производственный опыт. В процессе выработки инженерного решения в полной мере проявляется и реализуется творческий потенциал инженера, его деятельность имеет ярко выраженный новаторский характер. Но здесь инженер должен разумно сочетать смелый полет своей мысли с холодным и здравым практическим расчетом с существующими нормами и стандартами.

Не меньше творческой энергии требуется инженеру и при внедрении новой техники и технологии в производство. Опытный образец доводится до промышленного образца и серийного изделия через производственный эксперимент, связывающий науку с производством, Внести изменения в опытный образец, осуществить его "доводку" в соответствии с существующим на производстве технологическим процессом, " вписать " новое техническое устройство в существующую и функционирующую систему машин и механизмов, организовать эту работу силами большего коллектива ученых, инженеров, техников и рабочих - все это требует творческого мышления и действия, смекалки и умения продуктивно использовать научные знания и производственный опыт Для современной инженерной деятельности характерно то, что она становится прерогативой большего коллектива людей, члены которого взаимовосполняют и взаимодополняют друг друга. Нет такого человека который все знает и умеет делать все необходимое. Времена энциклопедистов давно прошли. Но можно для решения возникшей технической проблемы иметь в коллективе всех нужных специалистов. Именно этим обстоятельством вызвано формирование проблемных лабораторий.

Технические изобретения входят в некий развивающийся процесс, в котором принимают участие большое количество людей. В одних случаях несколько изобретательских актов служат импульсом к дальнейшим изобретениям. В других изобретательство сводится к существующему усовершенствованию уже сделанных изобретений. В третьих - к расширению сферы применения изобретений. Во всех этих случаях инженерная деятельность берет свое начало не только в деятельности отдельных людей, но подчас и рядом в совместном труде многих, т. е. в деференцированном по специализированным функциям "трудовом сотрудничестве". Примером этому могут служить усовершенствование велосипеда или автомобиля что приводит к потере авторства. "Все становится анонимным, - писал К. Ясперс. - Достижения одного человека тонут в достижениях других " (5,122). Техническое творчество проявляется как активная способность и сила, свойственная не столько отдельно взятому человеку, а в конечном счете - человечеству в целом.

Коллективность творческой инженерной деятельности ярко проявляется уже при определении целей и задач этой деятельности. Техника сама по себе не порождает цели. Целепологание развития техники задается людьми и в своем большинстве носит коллективный характер. "До сих пор, вплоть до настоящего времени, вряд ли было сделано изобретение, цель которого не была продумана в прежних источниках коллективного воображения, прежде чем были распознаны средства для ее достижения" - пишет Г. Рополь (1, 213).

Не только цели и задачи процесса изобретения, но и сами технические решения при осуществлении изобретения принимаются большим коллективом инженеров - проектировщиков, конструкторов, технологов, дизайнеров. Более того, к творческому процессу инженеров подключается деятельность экономистов, психологов, экологов и других специалистов. Но еще больший коллективный характер деятельности всех этих участников изобретательского процесса проявляется при функционировании созданной техники. В процессе эксплуатации техники к деятельности инженеров подключаются участвующие в производстве рабочие.

Ввиду коллективного характера инженерного творчества, усиления анонимности результатов этого творчества возникают проблемы не только организации изобретательского процесса, но и определения доли и соответствующего вознаграждения отдельных лиц, участвующих в этом процессе. Эта творческая доля должна быть четко обозначена, определена. Творчество отдельных инженеров не умаляется в своем значении, а лишь стимулируется творчеством своего колектива. В этом заключается качественная особенность инженерного творчества от его других видов, к примеру, от творчества в области литературы или искусства. В самом деле, представить себе, чтобы два десятка писателей по заданному сюжету сочинили "Гамлета" или "Фауста" сверхнаивно. Но творчество инженера имеет другую природу, оно стимулируется творчеством всего коллектива и получает соответствующею оценку своей эффективности.

Необходимость оценки результатов совместного творчества инженеров определяется тем, что новая техника как цель этого творчества является средством удовлетворения определенных личных и общественных потребностей. Техническое творчество не протекает в социальном вакууме. "Инженеры имеют свои общественные задачи в той же мере, - пишет В. Цимерли, - в какой их имеют врачи, священники, полицейские или философы" (1, 254). В таком же плане утверждение другого немецкого философа техники А. Хунинга: "Техническая деятельность осуществляется в хозяйственных взаимосвязях и служит постановкам экономических целей... Политические отношения и их ценностные основания определяют, помимо того, техническую действительность и отношение к ней" (1, 411). Противоположную точку зрения, с которой нельзя по нашему мнению согласиться, высказывает Р.Кеттер: "В задачу инженера или альтернативной инженерной науки не может входить обязанность определять и взвешивать потребности людей. Инженер... может отказаться от экономических тенденций... Технические проблемы являются проблемами "цель - средство" (1, 343).

В инженерном творчестве, как правило, существует два подхода к моделированию новой техники в процессе ее создания. Первый имеет дело только с техническими объектами и пренебрегает человеком, человеко - машинные отношения в лучшем случае отходят на задний план. При втором подходе исходным моментом модели является не техническое устройство, а процесс преобразования веществ и сил природы с целью удовлетворения человеческих потребностей. В этом случае моделируется система "человек - техника - производственная среда". В этой системе человеческие и технические носители функций взаимодействуют при исполнении общей функции.

В первом случае в технике видят лишь способ достижения цели, творчество деформируется, сам человек приносится в жертву совершенно внешней для него цели. Однако ценность техники всегда соотнесена с прогрессивной целью общественного развития, с реализацией творческих способностей человека, поэтому подобный подход к моделированию техники по своей сути является антигуманным, поскольку он не только не учитывает человеческие потребности, но и человеческие возможности. Он протовоположен второму, гуманному подходу к техническому моделированию, учитывающему социальную обусловленность создания новой техники и технологии.

Все перипетии творческой деятельности инженеров нельзя, безусловно, сводит только к социальной детерминации. Но и нельзя отрывать этот творческий процесс от определенных социокультурных обстоятельств. В процессе инженерного творчества огромную роль играют логические и психологические свойства сознания творящих субъектов, в частности, так называемое опережающее сознание - способность человеческого сознания определять будущее. "Именно это и является основой изобретательской способности, - пишет Г.Рополь, - потому что сознание способно перешагнуть инстинктивные побуждения, вызванные тем, что имеет место здесь и теперь, оно способно набросать цели на будущее, может найти и выработать новые цели...Решающим условием является акт человеческого сознания, который заново упорядочивает природные состояния и тем самым перешагивает естественно возникшее. Только при исполнении этого акта становится возможным новое решение" (1, 216). Конечно, технически полезное должно быть полезным в экономическом и вообще в социальном отношении. "Однако дух изобретательства, как таковой, независим от этого принуждения, - пишет К.Ясперс. - Решительные импульсы заставляют его как бы творить второй мир. Однако то, что он создает, обретает свою техническую реализацию лишь в такое мере, в какой это диктуется экономическим успехом в рамках свободной конкуренции или решением обладающей деспотической властью воли" (5, 122).

Таким образом, сам процесс технического творчества является выражением интеллектуальных потенций личности, однако на его реализацию как и на смысл этого творчества оказывают воздействие не только технологические, но и экономические и социально - политические факторы. Именно поэтому многие результаты технического творчества не получив социально - практического запроса в течение длительного периода времени не находили своего практического воплощения и общественного признания.

Можно заключить, что инженерная деятельность - это деятельность в сфере материального производства, имеющая техническую направленность. Она нацелена на превращение природного в социально значимое с целью удовлетворения определенных потребностей людей, в силу чего сама техника выступает как преодоление природы посредством человеческого сознания. Инженерная деятельность аккумулирует производственный опыт и использует научные знания, отличается высокой степенью интеллектуального творчества, протекает преимущественно в социальной среде и зависима от внешних, социокультурных факторов.

Отмеченные характерные черты инженерного творчества проявляются в различной степени в те или иные периоды ее исторического развития. Для современного этапа инженерного творчества и вообще инженерной деятельности особенно характерна их связь с научной деятельностью, которая имеет солидную историческую традицию.

 

Инженерная и научная деятельность являются различными сферами практики. Первая из них является духовной деятельностью в сфере материального производства и функционируют в его рамках на основе науки и опыта самого материального производства. Вторая отделяется от сферы материального производства и начинает выполнять функцию выработки знаний об окружающем мире.

Безусловно, исторически первой возникла техническая деятельность. Выделившись из животного мира люди вступили в историю полуживотными, грубыми, бессильными перед могуществом природы. Они еще не осознают все возможности своей жизнедеятельности. Человек обеспечивал себе питанием при помощи животнообразных, инстинктивных форм труда. Но постепенно люди начинают все более активно противостоять природе, вырабатывают первые технические приемы изменения природы, переработки ее веществ. "В слабости первых людей, и, одновременно, в их силе, проявляемой в подчинении природы и овладения ею при помощи орудий труда, которых лишены животные, не исключая и обезъян, заключалась одна из специфических форм противоречий, толкавших древних людей вперед" (33, 45).

В процессе активного противостояния природе у человека возникают духовные моменты, отсутствующие у животных: сознательное целеполагание, концентрация внимания, волевое поддержание необходимого напряжения, наслаждение трудом как игрой не только физических, но и интеллектуальных сил. Именно в труде, в процессе создания орудий труда возникает возможность идеального плана деятельности. "Начавшаяся вместе с развитием руки, вместе с трудом господство над природой, - писал Ф.Энгельс, - расширяло с каждым новым шагом вперед кругозор человека. В предметах природы он постоянно открывал новые, до этого неизвестные свойства " (34. 489). Каждый новый трудовой акт будил мысль человека, ставил перед ним вопрос о том, что и как надо сделать. Создание орудий труда требовало мысленного сохранения свойств в таких сочетаниях, которых нет в природных предметах. Он брал, к примеру, палку, камень и лиану и сооружал из них молот. Это обеспечивало движение образов в отрыве от их конкретной ситуации действия с предметом, идеальной деятельности субъекта, появление эмпирических знаний.

В эмпирический период развития техники люди использовали те законы природы, которые они открывали не в ходе теоретического познания действительности, а в ходе практической деятельности методом проб и ошибок. Эти законы гораздо позже были познаны наукой.

Первобытный человек в процессе обработки каменных орудий неосознанно использовал закон параллелограмма сил. Поднимая и перемещая тяжести он использовал законы рычагов первого и второго рода. В гончарном круге он стихийно использовал выравнивающий эффект маховика, а в первобытном вертикальном ткацком станке - силу тяжести, не зная законов тяготения. Он находил эти закономерности эмпирическим путем, аккумуляцией производственного опыта

Появление эмпирических знаний, их пополнение и обработка постепенно приводила к зачатков научных знаний. Изготовление и употребление ручных орудий труда заложили основы механики и физики, практические знания о животных и растениях - биологии, определение времени начала полевых работ и ориентации на местности - астрономии, необходимость измерения земельных участков, воды, зерна, построек - математики.

Таким образом начала инженерной и научной деятельности уходят в далекое прошлое человечества. Однако эти две сферы умственного труда в их современном понимании возникают гораздо позже. Правда, наука как деятельность по производству систематических знаний зарождается еще в древнем мире в условиях рабовладельческого общества. Именно тогда возникает возможность появления выводного знания, выделения абстрактно общего из конкретного. Именно тогда часть общества получает время, свободное от материального производства и появляются люди науки, которые начинают заниматься только выработкой знания, практическая в том числе и инженерная ценность которого отрицалась. Один из величайших людей античности Аристотель писал: " мы считаем, что более мудр во всякой науке тот, кто более точен и более способен научить выявлению причин, и,... что из наук в большей мере мудрость та, которая желательна ради нее самой и для познания, нежели та, которая желательна ради извлекаемой из нее пользы " (35,68).

Идеал "чистой" научной деятельности не запятнанной практическими интересами существовал довольно длительный период времени, который охватывает всю античность и феодальное общество. Причина того, что техническая и научная деятельность развивались изолировано друг от друга, двоякая. С одной стороны, техническая деятельность этого времени имело дело, в основном, с ручными орудиями труда для изготовления и функционирования которых достаточно было производственного опыта и эмпирических знаний. Другими словами не было со стороны технической деятельности востребованности в научных знаниях, техническая деятельность в эту эпоху почти не нуждалась в систематическом изучении природы. С другой стороны, наука еще не обладала такими знаниями и в таком виде, которые можно было бы использовать в технической деятельности.

Только в эпоху Возрождения из сферы технической деятельности начинает выделяться ее особый вид - инженерная деятельность ориентирующаяся не только на производственный опыт, но и на использование научных знаний. Великий Леонардо да Винчи во фрагменте "О заблуждении тех, кто пользуется практикой без науки" писал: "Те, кто влюбляется в практику без науки, подобны кормчим, выходящим в плавание без руля и компаса... Практика всегда должна быть построена на хорошей теории" (36, 367).

Но существующие традиции имеют огромную силу сопротивления. И в эпоху Возрождения и значительно позже вплоть до появления крупного машинного производства действенной связи между инженерной и научной деятельностью не было. Более того, как констатирует Дж. Бернал, "сама промышленная революция в начальных стадиях своего развития не являлась плодом каких - либо достижений науки; творцами ее были ремесленники - изобретатели, чей успех обусловливался исключительно благоприятными экономическими условиями " (37, 291). Изобретатель прядильной машины - самопрялки "Дженни", открывшей первый этап промышленного переворота в Англии, Дж. Харгривс совмещал профессии ткача и плотника. Делец.Р. Аркрайт запатентовал прядильную ватерную машину комбинируя принципы других изобретателей. Рабочий - суконщик Дж. Кей изобрел механический (самолетный) челнок ткацкого станка. Хозяин мастерской Дж. Уатт в процессе ремонта паровой атмосферной машин английского кузнеца Ньюкомена создает универсальную паровую машину с цилиндрами двойного действия. Маханик Дж.Стифенсон изобрел паровоз, который решил проблему создания парового железнодорожного транспорта. Бродячий живописец и чертежник, подмастерье у ювелира Роберт Фултон изобрел пароход. Английские фермеры Фаулер и Говард выработали наиболее подходящее сочетание паровой машины и плуга, создав паровой плуг.

И все же тенденция взаимосвязи технической и научной деятельности и формирование на этой основе инженерной деятельности в ходе промышленной революции становится все более сильной. Промышленная революция дала огромный стимул научной деятельности. Ее результаты в свою очередь находят техническое применение. Начинается история взаимосвязи инженерной и научной деятельности.

Для конца 18 и почти всего 19 веков характерно тесное сотрудничество в деятельности инженеров и ученых. До этого времени в развитии и функционировании ремесленного производства большую роль играли индивидуальные качества производителя - его сноровка, знания, опыт, умение. Психологические особенности индивида накладывали печать индивидуальности, неповторимости на производимые культурные ценности. С появлением крупного машинного производства рабочий становится простой механической силой, придатком машины. Его трудовые акты приобрели характер зависимости от работы машины, становятся стереотипными. Рабочему требовалось все меньше знаний. Происходит отчуждение духовных компонентов материального производства от физического труда, от знаний, сведений, умения отдельного рабочего, но не от системы материального производства. Весь процесс производства теперь требует все больше интеллектуальных сил. Крупное машинное производство может развиваться и функционировать только на научной основе. Духовные компоненты материального производства контактируются с компонентами духовного производства в единую творческую деятельность. Возникает заказ превращения науки в производительную силу общества, глубокого проникновения науки в производство и поэтому формирования особой группы людей внутри сферы материального производства с привилегией заниматься исключительно умственным трудом функция которого - разработка способов использования науки в производстве и утилитарное употребление научных знаний в овеществленном виде - в виде новой техники и технологии. В силу этих обстоятельств постепенно, однако довольно быстрыми темпами, формируется массовая профессия инженера в ее современном понимании.

Появление профессии инженера, который встал между ученым и непосредственным агентом производства, разрешило противоречие между универсальным характером деятельности ученого и той его опытно - конструкторской функцией, которая возникла на машинной ступени развития производства. Опытно - конструкторская функция становится функцией инженера. Однако в деятельности инженеров и ученых с начала 19 века развивается тесное сотрудничество, что ведет к взаимному обогащению и науки и производства. Техника машинного производства в силу своей сложности не могла дальше развиваться без науки, предполагала научную деятельность.Начинается массовое изучение уже установившихся промышленных процессов - паровой машины.металлургических процессов и т. д. Это становится могучей питательной средой для бурного развития естествознания. Вместе с тем, крупные научные открытия (электричество, успехи в химии) в дальнейшем вызвали к жизни новые технические устройства и даже новые отрасли промышленности телеграф, производство синтетических красителей и др.). Научные открытия получают простор для своего промышленного применения к процессу которого подключаются инженеры. Так, первый этап развития электрического двигателя постоянного тока берет свое начало от опытов Фарадея, открывшего явления взаимного вращения магнитов и электрических токов. На втором же этапе электрический двигатель выходит за стены научной лаборатории и характеризуется практическим направлением конструкторов - изобретателей (Якоби, Девенпорт, Фроман). "Практическое применение науки в середине 19 века развивалось настолько быстрее, - писал Дж. Бернал, - чем сама наука, что организация этого применения и ее дальнейшее развитие стали делом практики" (37, 305).

Появившиеся инженеры нового типа руководствовались в своей деятельности не только производственным опытом, но и научными знаниями, сочетали науку с практикой. Это сочетание науки с производством породило особый класс наук - технические науки. Правда предпочтение практического знания умозрительному отдавал еще Р. Декарт, который проявил глубокую интуицию в характере надвигающейся новой эпохи. Из сферы научного знания примат все больше отдается тем областям, которые имели непосредственный выход в практику. На первое место во всей системе научного знания становится механика, которая выступает не только как источник технических нововведений, но и как основа мировоззрения. В механике видели условие и источник успехов баллистики, гидротехники и вообще прикладных результатов и во тоже время в ней видели схему, объясняющую структуру и динамику мироздания. Но по мере усложнения технической основы крупного машинного производства наука играет все большую роль и в самом производстве и в обществе в целом.

Однако отдельному субъекту стало не под силу заниматься одновременно и производством техники и выработкой технического знания. Последнее оформляется в особого рода духовную деятельность. Наука начинает применяться не только в качестве материализованного научного знания в технике и технологии, но и в своей непосредственной форме, в форме знаний. Это в свою очередь потребовало определенного изменения характера научных знаний.

В середине и особенно в конце 19 века постепенно развивается профессионализация труда инженеров и ученых. К концу века инженеры и ученые представляли собой уже гораздо более изолированные профессиональные корпорации. Именно в это время английский историк науки У. Уэвелл ввел в оборот термин "ученый" для обозначения специалистов, занимающихся научной деятельностью. В последней четверти 19 века появляются научные лаборатории с профессиональными учеными в них. Параллельно этому оформляется и профессиональная коорпорация инженеров. В силу дальнейшего разделения общественного труда контакт в деятельности ученых и инженеров был утерян. Характеризуя сложившееся положение Жд. Бернал писал, что в 19 веке "вместе с быстрым ростом производства машин рос и разрыв между относительно небольшим числом исследователей нового - ученых и множеством тех, кто реализует и использует эти научные открытия - инженеров" (37, 435). В общественном сознании формируется мнение, что научная деятельность ограничена рамками производства нового знания, а инженерная - разработкой способов и форм его технического и технологического использования. Ученые не "опускались" до внедрения своих знаний в производство. Г. Герц, открывший существование предсказанных Максвеллом электромагнитных волн, фотоэлектрический эффект и усердно занимающийся основами механики совершенно не думал о практическом применении результатов своей научной деятельности. К. Рентген открыл Х-лучи позднее названые его именем и хотя по образованию был инженером но по виду своей деятельности ученого не принимал никакого участия в создании рентгеновской технике - рентгенодиагностике и рентгенотерапии. Это совсем не значит. что они отрицали возможность практического применения результатов своих научных изысканий. В своем первом сообщении об открытии Х-лучей К.Рентген обращает внимание на применимость открытых лучей для проверки производственной обработки металлов, не говоря уже о применении этих лучей в медицине. Но ученые того времени не считали своим долгом заниматься практическими проблемами. Применение результатов научной деятельности было делом других людей и прежде всего инженеров. И это применение впоследствии имели огромное значение. Открытие электрических волн Г. Герцом привело к развитию беспроволочного телеграфа благодаря работам Попова, Брауна и Маркони. Радиовещание, телевидение и радарная техника неотделимы от результатов научного вклада Г. Герца, но применением этих результатов занимался не их автор, а Либен, разрабатывавший многостороннее применение электронных трубок и многочисленная армия инженеров- изобретателей. Такова же судьба и работ К.Рентгена "Несмотря на то, что Рентген по образованию был инженером, - пишет немецкий историк науки Ф.Гернек, - он не участвовал создании и дальнейшем развитии рентгеновской техники. Это сделали другие: ученые и дельцы, которые собрали богатый урожай на целине" (38, 93). Одним из первых нашел техническое применение открытию К. Рентгена американец Эдисон. Он создал удобный демонстрационный аппарат и организовал менее чем через год после открытия рентгеновских лучей в Нью-Йорке рентгеновскую выставку, на которой посетители могли разглядывать собственную руку на светящемся экране. "Рентген прекрасно понимал большое научное. медицинское и технологическое значение своего открытия,- пишет далее Ф. Герек. -Однако ему чужда была всякая мысль о его денежной эксплуатации...Он не думал также ни о каких охранительных правах на технику его опыта.Рентген не думал практически реализовать свое открытие. Он не был "коммерции советником", подобно Вальтеру Неристу. Как метко заметил один американский ученый, "окна его лаборатории, выходящие в сторону Патентного ведомства, всегда были закрыты" (38,93).

Чем дальше от непосредственных практических задач стояли результаты научной деятельности, тем впоследствии они имели большее значение для инженерии. Фотоэлектрический эффект, который наблюдал и описал Г. Герц во время своих опытов с искрами, приобрел позднее громадное практическое значение, а его работы с катодными лучами явились шагом к открытию и использованию атомной энергии. Но ученые того времени проводили свои исследования без постановки перед собой практических задач. В этом отношении характерно свидетельство К.А.Тимирязева об исследованиях М.Фарадея. Он пишет: "Начало той власти над электричеством, которая так характеризует современную жизнь, можно проследить до той тесной, плохо освещенной лаборатории в Британском институте, где работал Фарадей, имея ввиду только одно - расширение знаний" (39,344).

Некоторые исследователи истории науки и культуры при характеристике возникших в то время резких границ между научной и инженерной деятельностью с известной долей правды говорят о двух линиях в функционировании культуры того времени - "линии Эдисона" и "линии Фарадея", линиях научных открытий и инженерных изобретений. Безусловно, и тогда были деятели, творчество которых не вмещалось в эту дилемму - Бертолле, Д.И.Менделеев и др. Но это было скорее исключение из общего правила. На практике продолжало преобладать традиционное мнение, что инженерная деятельность, запятнанная интересами практической выгоды является не благородной деятельностью в отличие от благородной научной деятельности, стремящейся уловить светлый луч истины. Научные исследования и инженерная деятельность все более обособляются друг от друга. Ученые в лучшем случае давали в теоретической форме ответы на выдвигаемые инженерной практикой вопросы, не участвуя в их практической реализации. Подобные взгляды существовали даже в начале 20 столетия. Р.Грегори писал в это время: "Применение в промышленности научных данных обычно не входит в круг заданий ученого; инженер или техник, обладающий практической смекалкой, - лучше могу справиться с задачей приспособления научного принципа к постройке двигателя, инструмента или приборов" (40,134).

Отсутствие на промышленных предприятиях опорных баз для ученых, резкое отличие условий научного эксперимента в институтских лаборатория от цеховых условий протекания технологического процесса, различие в технической оснащенности научной и инженерной деятельности, наличие большой доли немеханизированного труда, предубежденность общественного мнения как отражение в массовом сознании противоположности между физическим и умственным трудом и многие другие факторы затрудняли установление связей между научной и инженерной деятельностью.

Конечно техника и технология крупного машинного производства создавались с применением научных знаний, что продолжало стимулировать дальнейшее развитие технических наук. Именно в это время формируется кинематика механизмов, теория трения, теория зубчатых сцеплений,выходят технические учебники. А.Н.Боголюбов пишет, что "наука о машинах, бывшая до того времени, в основном, наукой описательной, начинает пользоваться аналитическими, графическими и экспериментальными методами исследования" (41, 269).

Все это так. Но верно и мнение Дж.Бернала, что само функционирование техники, производственные процессы как таковые имели весьма малое отношение к науке и никаких серьезных попыток к их научному изучению в то время не предпринималось. Качественные изменения во взаимоотношениях между научной и инженерной деятельностью наступают по мере вызревания современной научно-технической революции, которая и логически и хронологически соединила научный и технический прогресс и изменила сам характер научной и инженерной деятельности.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 705; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.