Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Главная проблема философии техники. 1 страница




Научно-техническая революция - синтез науки и техники.

В развитых странах мира ныне научно - технический прогресс принял революционную форму. Два потока - техническое и научное развитие слились в единый научно-технический поток, получивший название научно-технической революции. В чем же состоит сущность и содержание научно-технической революции, каковы основные этапы ее развития в ходе которого из науки и техники получился научно-технический сплав?

Одним из наиболее спорных вопросов при обсуждении проблем научно-технической революции является вопрос о ее сущности. Единого мнения здесь нет. Одни авторы сводят сущность НТР к изменению в производительных силах общества, другие - к автоматизации производственных процессов и созданию четырехзвенной системы машин, третьи - к возрастанию роли науки в развитии техники, четвертые - к появлению и развитию информационной техники и т.д. Нам кажется, что во всех этих случаях отражаются лишь отдельные признаки, отдельные стороны научно-технической революции, а не ее сущность, которую, по нашему мнению,. можно определить так: научно-техническая революция есть совокупность взаимообусловленных качественных изменений в науке и технике, ведущих к установлению новой естественно-научной картины мира и к коренному изменению места и роли человека в производственном процессе.

Для более глубокого понимания сущности научно-технической революции рассмотрим процесс ее развития. Прослеживая этот процесс можно выделить его определенные этапы: формирование предпосылок НТР, ее первые проявления, развертывание и, наконец, современный этап.

Формирование естественнонаучных предпосылок НТР относится к концу 19 - началу 20 веков, когда классическая механическая ньютоновская картина мира работами Герца, Рентгена, Лебедева, Лоренца, Томсона, Розерфорда, Бора, Пуанкаре, Планка, Эйнштейна была заменена релятивистской механикой, а по существу - новой естественно-научной картиной мира. Поскольку работы в области физики и математики оказали стимулирующее воздействие на другие области естествознания, это была революция в естествознании.

На основе этих работ как из рога изобилия посыпались научные открытия - динамика твердого тела, аэродинамика, механика жидкости и газов, теория устойчивости движения, физико-химический анализ, теория вероятностей и другие. Но эти научные открытия еще не находили технического применения. Даже такие видные достижения технического прогресса того времени, как крекинг-процесс, двигатель внутреннего сгорания, самолет и радио базировались на использовании знаний классической механики. Однако эти научные открытия не могли не повлиять на общее миропонимание людей, на настрой их мыслей, перестройку этих мыслей. Именно эта революция в естествознании явилась предтечей последующей за ней научно-технической революции, которая возникает на основе использования новейших научных достижений в технике и развивает дальше как технику, так и науку.

В 30-х годах нашего века проявляются первые ростки научно-технической революции - новая квантовая теория, волновая механика, начало комплексной механизации производственных процессов, появление первых автоматов, радиолокации, осуществлены деление ядра и цепная реакция. Научные открытия получают быстрое применение. Дж.Бернал писал, что "впервые в истории наука и ученые принимают непосредственное и открытое участие в серьезных экономических, промышленных и военных событиях своего времени" (31,383).

Участие науки в функционировании производства привело к качественному изменению технического базиса производства. Завершается переход от паровых двигателей к электродвигателям, происходит качественное техническое усовершенствование двигателя внутреннего сгорания и переход к турбодвигателям, дальнейшее развитие получают средства транспорта и связи, появляются реактивные самолеты, ракеты, полимеры и пластические массы, техника массового поточного производства и ядерная техника.

С середины 50-х годов в полной мере развертывается революционная форма научно-техничвеского прогресса как преобладающая форма развития науки и техники. Происходят дифференциация и интеграция различных областей научного знания. Углубляется специализация научной деятельности и в то же время интегративные процессы в науке преодолевают профессиональную ограниченность ученых, способствуют решению крупных комплексных научных проблем.

Для структурных сдвигов в науке свойственно также изменение удельного веса и значимости технических наук, занимающих лидирующее положение. Прежнее их понимание как прикладных отраслей механики, физики, химии отмирает и технические науки становятся самостоятельной группой наук, выполняющих функции познания, конструирования и функционирования мира искусственно созданной технической среды - второй формы объективной реальности. Все большую значимость приобретают фундаментальные научные исследования как теоретическая основа революционных сдвигов в технологии. Быстрыми темпами начинают развиваться биологические науки, возникает бионика как особая наука о свойствах живых организмов и использовании этих свойств в технике и технологии.

В процессе углубления науки в более сложные области материального мира содержание науки обогащается, наполняется новыми фактами, гипотезами, законами, теоретическими принципами и теориями. Возрастает точность и достоверность результатов научных исследований. Это обеспечивает все большую роль науки в развитии и функционировании практики, что приводит к изменению функций науки. Наука превращается в одну из производительных сил общества, а по мере дальнейшего развития научно- технической революции она становится непосредственной производительной силой общества. В этом случае наука имеет как бы две ипостаси. В своей субъективной форме наука как производительная сила выступает в виде технико-техенологических знаний и определенных трудовых актов человека. Объективизированной формой науки является техника и технология. Научные знания, материализованные однажды человеком в технике и технологии, в дальнейшем без посредства человека, непосредственно функционируют в автоматизированном производственном процессе. Наука заставляет неодушевленные члены системы машин посредством ее конструкции действовать как автомат.

Автоматизация производственных процессов, как следствие передачи нетворческих сторон трудовых функций человека техническим устройствам, выдвигается постепенно в число лидеров технического прогресса. Впитывая в себя новейшие достижения науки и техники, автоматизация качественно меняет место и роль человека в непосредственном технологическом процессе. Из непременного агента этого процесса человек превращается в его регулятора в широком смысле этого слова. Постепенное включение компьютеров в технологический процесс начинает заменять отдельные стороны логических функций человека и делает первые шаги кибернетизация производства. На этом этапе развития научно-технической революции были автоматизированы уже ранее механизированные процессы, но многие виды труда еще остались за пределами автоматизации. Однако весьма заметно проявляется тенденция ускорения темпов автоматизации и расширения ее рамок, она постепенно охватывает вспомогательные участки промышленного производства, сельское хозяйство и сферу бытовых услуг, приводит к резкому росту технического обеспечения функционирования всех отраслей народного хозяйства.

Рост технической оснащенности отраслей народного хозяйства, все возрастающий технический потенциал общества требует для своего функционирования все большего количества энергии. Это стимулирует как развитие традиционных способов ее получения (использование энергии падающей воды, угля, нефти, газа, торфа), так и переход к использованию новых источников энергии, особенно внутриатомной. Как основной вид энергии электричество используется не только для приведение в движение технических устройств, но и в технологических процессах (термических, световых, электромагнитных и др.).

Развертывающаяся научно-техническая революция требует не только все большего количества энергии, но и вещества. Совершенствуются способы извлечения вещества из руд, начинает практиковаться вторичная обработка сырья. Происходит рост химического синтеза веществ нужных производству и быту.

В это же время начинает бурно развиваться радиоэлектроника и все шире применяться в научных исследованиях и на производстве. Однако настоящий "радиоэлектронный взрыв" еще впереди.

В этот период развития научно-технической революции происходит крупное научно-техническое и культурное событие - наука и техника вырывается в космос, начинается их космизация, утрачивается геоцентрический характер научно-технического прогресса. Человечество вступает в качественно новый этап взаимоотношения с природой, что имело огромное мировоззренческое значение и, вместе с тем, стимулировало дальнейшее развитие науки и техники. Наука получает огромную сумму принципиально новых знаний, что приводит к возникновению новых наук - космической биологии, космической медицине и других наук, к изменению методологии исследования в ряде областей научного знания. Так. астрономия, занимающаяся наблюдением небесных тел и процессов, стала широко применять научный эксперимент.

Изменяется и область техники и технологии. В условиях глубокого космического вакуума испытываются свойства новых материалов, веществ, технических конструкций и технологических процессов. На основе передовых отраслей научно-технического прогресса на Земле создается огромное космическое хозяйство. Новые конструктивные решения, приборы, материалы, топливо, организация научных исследований и внедрений оказывают влияние на другие отрасли народного хозяйства, которые усиливаются работой космической техники на потребности общества.

С середины 70-х годов 20 века начался новый, современный этап научно-технической революции, плоды которого получили широкое практическое применение. Теперь уже революционные научно-технические изменения охватили все отрасли производства и отрасли науки.

Сущность современного этапа научно-технической революции состоит в качественном повышении наукоемкости техники и технологии, в переходе от материало-, энерго- и трудоемких процессов к материало-, энерго_ и трудосберегающим. Содержание нового этапа научно-технической революции составляют качественные изменения в системе научного знания в сочетании с приоритетными направлениями технического прогресса, которые определяют вступление человечества в новую технологическую эру 21 века. Каждое из направлений этого этапа научно-технической революции изменяют свою значимость и роль в процессе развертывания научно-технической революции в различных странах. Вместе с тем эти направления имеют глобальный характер, т.е. их важнейшие характеристики присущи в той или иной степени всем странам.

В самом содержании научного знания возрастает удельный вес выводного знания, продолжается дальнейшая дифференциация и интеграция наук. Усиливается взаимосвязь наук, первичная форма этой взаимосвязи, когда каждая наука изучает определенную сторону объекта своими специфическими методами и средствами а затем науки обмениваются между собой информацией с целью получения целостного знания об объекте, сменяется развитой формой взаимосвязи. В этом случае возникает междисциплинарное сотрудничество в процессе самого исследования, представители различных областей научного знания решают одну общую задачу, проводят одно комплексное научное исследование, охватывающее различные аспекты объекта.

Задачи, выдвигаемые техническими потребностями производства, становятся все более сложными, возникают комплексные проблемы. Для их решения нужна другая методология научного исследования, делающая возможным обобщение более широкого и глубокого уровня. Возникает особый класс понятий - общенаучных: алгоритма, модели, вероятности, системы, функции, структуры и др., которые широко используются в особом классе наук и научных направлениях- общей теории систем,кибернетике,синергетике и др.

Синергетика (теория самоорганизации) - междисциплинарное направление научных исследований, определенная совокупность общепринятых в научном сообществе идей и методов (образцов) научного исследования, научная парадигма, вводящая принципиально новое видение мира и новое понимание процессов развития. Имея преемственную историческую связь с кибернетикой и общей теорией систем синергетика исходит из противоположной точки зрения на объективную реальность. Для синергетики неравновесность не препятствие, а, напротив, источник упорядоченности, для нее процессы окружающего нас мира в принципе нелинейные а линейные процессы составляют весьма ограниченный класс. Предметом синергетики является механизм самоорганизации структур, переход от хаоса к порядку и обратно. Этот механизм исходит из структурной общности всех явлений в живой и неживой природе, функциональной общности процессов самоорганизации и особой, конструктивной роли случайности в развитии. Хаос - основа процесса развития.

Синергетика показывает при каких условиях и для каких систем случайности (флуктуации) могут привести к возникновению порядка. Ключевые идеи синергетики: нелинейность, самоорганизация и открытые системы. Не только человек активен, но и природа не является "немой".

В нелинейной среде (т.е в среде, которая описывается нелинейными математическими методами) имеется спектр альтернативных случайностей. Какие из них могут быть реализованы определяется возможным "блужданием" по полю путей развития. Случайность есть творческое конструктивное начало, она способна сыграть роль того механизма, той силы, которая выводит систему на ее внутреннюю организацию. Поэтому случайности могут приводить к существенному результату. Но чтобы случайность могла породить значительные события, среда должна находиться в критическом, возбужденном состоянии. Незначительный повод может вызывать катастрофу. Неустойчивое состояние среды чувствительно к малым флуктуациям. Если существует много путей развития есть право выбора оптимального и таким путем можно сократить время прихода желательных событий и далеко не все направления развития реализуются. Мир творим случайностью.

Нетрудно видеть, что подобные идеи, существующие в современной науке, вносят существенные коррективы в философское осмысление процесса развития, который традиционно понимался как закономерный процесс, реализующий объективную необходимость.

Новые научные направления рождаются не только на стыке различных научных дисциплин, но и на стыке науки и техники. Так, новое направление по целенаправленному изменению генетических программ - генная инженерия открыла перед наукой и техникой совершенно новые возможности: извлекать из клетки само вещество жизни, перекраивать его и манупулировать с генами для создания новых видов растений и животных. Уже существуют "генные машины", способные собирать фрагменты генов за несколько часов.

Развитие традиционных областей научного знания, появление новых наук и научных направлений привело к экспоненциальному росту научных знаний и числа ученых. Во времена К.Маркса объем научной информации удваивался каждые 50 лет, ныне - каждые 20 месяцев (рис.5)

Рис.5. Рост потока научно-технической информации (n -

кратность роста). (32,77).

В целом, в процессе революционных преобразований в современной науке происходит коренное изменение содержания научных знаний об объективном мире, в силу чего содержание науки приходит в противоречие с формой (способом) научного мышления. Это приводит к фундаментальному изменению как в сфере теоретических представлений, так и в методологии научного познания.

Новый этап научно-технической революции включает в себе не только революционные изменения в науке, но и приоритетные направления современного научно-технического прогресса - электронизацию народного хозяйства, комплексную автоматизацию, компьютеризацию и роботизацию производства, развитие атомной энергетики, новую технологию получения и обработки материалов, биотехнологию.

Под электронизацией народного хозяйства понимается качественно новый этап в развитии электронной техники, которую на Западе часто называют "компьютерной революцией". Это название имеет определенное основание, так как появление компьютеров является важным научно-техническим и социальным фактором, одним из главных направлений научно-технической революции. "Компьютерная революция" поднимает на принципиально новый уровень автоматизацию умственного труда, что обеспечивается созданием интегральных коммуникационно-вычислительных систем, которые во взаимодействии с человеком могут формировать, управлять и контролировать информационные потоки и за счет этого глубже и точнее познавать объективный мир.

Качественно новый этап в развитии электронной техники представляет производство и использование микропроцессоров, которые стали символом нового этапа научно-технической революции. Микропроцессоры - база всех средств промышленной автоматизации, это важнейшие блоки ЭВМ, роботов, автоматов, это качественный скачок в развитии электроники. Имея широкий диапазон применения - от регулирования расходов топлива в автомобиле до космической техники, микропроцессоры при повышении их качества и надежности снижаются в стоимости изготовления и цене. Микропроцессоры превратили производство компьютеров в одно из ведущих и наукоемких отраслей промышленности. Рождается современная информатика, исследующая информационные процессы любой природы для разработки информационной техники и технологии.

Появление микропроцессоров Национальная Академия Наук США рассматривает как "вторую промышленную революцию", качественно отличную от первой, связанную с появлением универсального двигателя и суппорта. Но видимо более точным является утверждение, что появление компьютеров с использованием микропроцессоров ознаменовало определенный этап в развитии научно-технической революции, который связан с таким видом кибернетической техники, как мини- и микро-ЭВМ.

Ведутся работы по созданию биокомпьютеров, которые будут использовать белковую память. Наряду с работами по созданию молекулярного биокомпьютера ведутся разработки нейрокомпьютера - системы нечисловой информационно-логической обработки, реализуемой на машинных средствах. Это направление использует достижения физики твердого тела и нейробиологии, которые стимулировали разработку искусственных нейронных сетей в виде электронных схем.

Компьютеры получили широкое применение в народном хозяйстве - от промышленности и научных исследований до искусства и быта. Микропроцессоры являются "нервными узлами" средств автоматизации для гибких производственных систем (ГПС), имеют большой диапазон использования. Огромными темпами развивается современная радиоэлектроника. Высокая скорость передачи сигнала, безынерционность, малые размеры, экологичность, большая степень надежности обеспечили техническое, технологическое и научное применение радиоэлектронных устройств.

Важным направлением современного этапа научно-технической революции является комплексная автоматизация производственных процессов. Причем ее рассматривают ныне не в узкотехническом аспекте, как замену труда человека работой машины, а как создание человеко-машинных систем, которые включаются в человеческую деятельность. Если на предыдущих этапах развития научно-технической революции автоматизировались отдельные трудовые процессы людей или отдельные технологические участки, то теперь речь идет о комплексной автоматизации, представляющей собой гибкие автоматизированные производства (ГАП). Государственный стандарт определяет ГАП как совокупность или отдельную единицу технологического оборудования и систем обеспечения его функционирования в автоматическом режиме, которая обладает свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах их характеристик.

История появления ГАП восходит к 50-м годам, когда в серийном производстве жесткая автоматизация обнаружила уязвимые места - большая нагрузка на человека-оператора, невозможность быстрой переоснастки оборудования для выпуска новой продукции. Выпускаются станки с программным управлением (СПУ), которые связаны между собой, с роботами и ЭВМ в составе единого машинного центра. СПУ, роботы и ЭВМ создали начальные звенья ГАП. Для кардинального решения проблемы вводятся система автоматического проектирования (САПР). Это позволило интегрировать все технологические звенья вместе с контрольными программирующими устройствами в систему ГАП.

ГАП представляет собой автоматизированный производственный участок, состоящий из трех частей - перенастраивающегося производственного оборудования, автоматической системы планирования и управления производством и автоматической системы проектирования, конструирования, разработки и изготовления новой продукции. ГАП создает оптимальные условия для полной ликвидации тяжелых и непривлекательных видов труда, экономит труд, делает его привлекательным для человека. Функционирование ГАП включает в себя роботов.

Историческая роль робототехники заключается в создании условий для перехода к полной автоматизации - качественно новому технологическому способу производства. Гибкие производственные системы помимо роботов опираются на использование САПР, ЭВМ, СПУ, контрольные программирующие устройства. Создается система компьютеризированного производства - способ соединения компьютеров с производством. Она обеспечивает компьютеризированное конструирование, групповую технологию, автоматизацию вспомогательных процессов, компьютеризацию производственных операций, функционирование роботов. Такая система позволяет использовать ЭВМ на всех стадиях производства и в качестве главного компонента включается в сеть управления отдельных станков, их групп и всего предприятия.

Современный этап научно-технической революции предполагает ускоренное развитие атомной энергетики, совершенствование АЭС, улучшение использования природного урана, разработку реакторов на быстрых нейронах. Практическое применение управляемых реакций термоядерного синтеза по мнению специалистов станет возможным на рубеже 21 века. Сейчас имеется научное основание для сооружения технологического термоядерного реактора. Эта работа началась под руководством международного агентства по атомной энергии. Однако по мере развития атомной энергетики все чаще и острее становится проблема обеспечения безопасности и экологичности атомных энергоблоков. Чернобыльская авария показала какой вред и неисчислимые беды приносит их аварийность.

Перспективным является непосредственное преобразование атомной и тепловой энергии в электрическую с помощью магнитогидродинамических генераторов (МГД-генераторов), солнечных батарей, термогенраторов, топливных элементов. Прямое преобразование тепла в электричество позволяет создать простые и вместе с тем надежные ядерные и электрические установки.

Новые материалы и технологии их производства и обработки будут разрабатываться на основе создания новых компазиционных, керамических, износостойких и полупроводниковых материалов, пластических масс, создания технологий с применением высоких давлений, вакуума, импульсных воздействий и энергии взрыва. Создается новый "набор" материалов, их качественное и количественное увеличение. Дело в том, что под воздействием современного этапа научно-технической революции в "наборе" используемых материалов происходят существенные изменения, а количество потребляемого материала достигает огромных размеров. Поэтому, хотя в перспективе новая волна научно-технической революции движется по линии создания материалосберегающей техники и технологии, ныне производство полимеров растет высокими темпами, получает быстрое развитие порошковая металлургия и вторичная обработка сырья.

Вообще для современного этапа научно-технической революции характерно ускоряющееся развитие способов создания принципиально новых материалов, не встречающихся в природе. Сформировалась новая отрасль науки и техники - экспериментальная минералогия, позволяющая создавать вещества с заданными свойствами.

Пластмассы, металлоорганические соединения (металлы и полимеры), кристаллиты, сплавы с заранее заданными свойствами широко применяются в современном производстве удовлетворяя его жестким параметрам. Они заменяют естественные материалы, добыча которых подчас дороже стоимости изготовления искусственных материалов. Особое значение имеют жаропрочные и сверхпрочные материалы, композиционные материалы нового типа, создание предельно чистых веществ. На основе практического использования теории сверхпроводимости при гелиевой температуре создана сверхпроводящая керамика, микронная пленка, кабели, "супермагниты".

Необходимой частью современной техники становится применение органических продуктов и красителей. Растворы органических красителей применяются в лазерах, в печатающих устройствах для современных компьютеров, в жидкокристаллических материалах для индикаторов. В промышленности все большее применение получают металло-матричные композиты, обладающие высокой прочностью и износостойкостью, дисперсионно-упрочненные алюминий-радиевые сплавы, алюминиды, полиэфкретоны, титан и его сплавы.

Наконец, важным направлением современного этапа научно-технической революции является ускоряющееся развитие биотехнологии. Это новая и быстро прогрессирующая отрасль науки и производства основана на промышленном применении естественных и целенаправленно создаваемых живых систем (прежде всего микроорганизмов). они получают все большее применение в сельском хозяйстве, медицине, энергетике. Изучаются биологические процессы, связанные с обменом веществ, для создания технологии с использованием биологических процессов. Для развития биотехнологии характерна широкая автоматизация, применение микропроцессорной техники. Изучаются биологические процессы, связанные с обменом веществ, для создания технологии с использованием этих биологических процессов. Разработаны и совершенствуются биотехнологии получения новых биологически активных веществ и лекарств, средств защиты растений и регуляторов их роста, получения продукций, создания сельскохозяйственных гибридов, биоэнергетики. Глубоко изучаются механизмы хранения и передачи наследственной информации для их моделирования.

Практическое использование биологических процессов знаменует качественно новый этап в развитии общественного производства. Происходит превращение природных процессов в помышленные и их сочетание. Биотехнология является одним из соединительных звеньев современного этапа научно-технической революции с набирающей силу научно-технологической революцией.

Во временном отношении, как видно из предшествующего изложения, научно-техническая революция охватывает довольно длительный период времени. Трудно сказать сейчас, когда она окончится. Но учитывая нынешние темпы развития науки и техники можно сделать предположение, что для завершения научно-технической революции потребуется не так уж сравнительно много времени. Она, видимо, завершится с переходом от старого индустриального технологического базиса, к качественно новой информационной технологии с формированием компьютерных интегрированных производств, внедрением комплексных автоматизированных систем и технологий, суть которых составляет переход от механических к физическим, химическим и биотехническим процессам. Эти процессы будут сопровождаться не только созданием АСУ, овладением термоядерной энергией, но и комплексным применением достижений всех наук в целях гармоничного развития человека. Таким образом, за горизонтами современного этапа научно-технической революции вырисовываются контуры новой и более радикальной гуманитарной революции. Объектом этой революции будет сам человек, и ее ход будет подчинен гуманистическим идеалам человечества.

Качественно новый этап научно-технического прогресса делает еще только свои первые шаги, выступает еще в виде отдельных проявлений и намечающихся тенденций. Но сквозь них проглядывает основная черта современного этапа научно-технической революции - перерастание ее в научно-технологическую революцию.

Перерастание научно-технической революции в научно-технологическую революцию определяется осознанием ограниченности для человечества его жизнедеятельных ресурсов. От идеи господства над природой, на что нацелена современна техника и технология, люди переходят к идеи гармоничного развития с ней, на что ориентируется технология будущего. Формируется новый уровень более глубокого слияния науки с производством, проникновение науки во все сферы общественной жизни. Технология как наука о производственной деятельности использует науку не только для достижения конечного эффекта данного конкретного производства, но и для научного обоснования всех социальных, культурно-гуманистических решений и процессов, связанных с этим производством.

Вполне естественно, что такие решения опираются на большое количество самой разнообразной информации. Объем расчетно-вычислительной деятельности, ее качество резко возрастают. Здесь уже не пригодны прежние расчетные средства. Их заменяют ЭВМ, компьютерная наука, информатика. Последняя формируется на базе синтеза компьютерной техники и науки, кибернетики, АСУ.

Информатика- это наука, изучающая все аспекты получения, хранения, преобразования, передачи и использования информации. Под этим понятием объединяются ряд научных направлений, исследующих разные стороны одного и того же объекта - информации. В числе этих направлений можно назвать теоретическую информатику, кибернетику, программирование, искусственный интеллект, информационные системы, вычислительную технику.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 1140; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.