Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение знака заряда и величины дзета-потенциала. II. Электрофорез золя гидроксида железа




II. Электрофорез золя гидроксида железа.

Оборудование и посуда.

Реактивы.

Методом капиллярного анализа

I. Определение знака заряда коллоидных частиц

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ

РАБОТА 10

 

 

Поверхность некоторых веществ при погружении в воду приобретает электрический заряд (целлюлоза, шелк, стекло, песок). Так целлюлоза при погружении в воду заряжается отрицательно. На этом явлении основан метод капиллярного анализа. Вода поднимается вверх по полоске фильтровальной бумаги, опущенной одним концом в воду. Поднятие воды по капиллярам бумаги происходит под действием сил поверхностного натяжения. Если в воде находятся отрицательно заряженные коллоидные частицы, то они не притягиваются капиллярами поверхности бумаги и двигаются вверх вместе с водой. Если частицы имеют положительный заряд, то они не будут подниматься, а осядут на поверхности бумаги. Высота и скорость капиллярного подъема зависят также от качества фильтровальной бумаги.

Таким образом, можно определить знак заряда частиц золя. Особенно удобен капиллярный метод для определения знака заряда частиц красителей в их золях.

Кроме определения знака заряды частиц, капиллярный метод можно применять для анализа смесей различных окрашенных веществ. Например, при погружении кончика полоски фильтровальной бумаги в раствор, содержащей смесь флюоресцеина (желтого красителя) и метиленового голубого, по этой полоске будет подниматься только флюоресцеин.

Цель работы.

Определить знак заряда коллоидных частиц красителей методом капиллярного анализа.

1%-ные растворы красителей:

· Фуксин.

· Феноловый красный.

· Метиленовый синий.

· Флюоресцеин.

· Конго красный.

· Сафранин.

· Стаканы на 50 мл.

· Полоски фильтровальной бумаги.

 

Выполнение опыта.

1. В стаканы наливают растворы красителей (примерно по 1 – 1,5 см по высоте). В растворы опускают на 0,5 см полоски фильтровальной бумаги, верхние концы которых закрепляют кнопками на планке. Через час после начала опыта полоски вынимают из растворов и сушат. Измеряют высоту подъема различных красителей и делают вывод о знаке заряда частиц.

2. Результаты опыта заносят в таблицу. Высушенные полоски фильтровальной бумаги прилагают к отчету.

Таблица 10.1

Наименование красителя Высота подъема, см Знак заряда частиц («+» или «–»)
Фуксин    
Феноловый красный    
Метиленовый голубой    
Флюоресцеин    
Конго красный    
Сафранин    

 

На границе раздела твердой фазы и раствора, как правило, возникает двойной электрический слой (ДЭС). Его происхождение может быть двояким. Во-первых, возможна ионизация молекул, составляющих поверхностный слой твердой фазы, например, ионизация молекул H2SiO3, образующихся на поверхности SiO2 в воде. Во-вторых, на поверхности твердой фазы может происходить адсорбция одного из ионов, присутствующего в растворе электролита. При этом на поверхности преимущественно адсорбируются ионы, входящие в состав твердой фазы или близкие к ним по природе. Так на поверхности частиц золя AgCl будут адсорбироваться ионы Ag+ или Cl в зависимости от того, какие из них имеются в растворе в избытке. Ионы, определяющие заряд коллоидной частицы (гранулы) называются потенциалобразующими. К заряженной поверхности частиц будут притягиваться ионы противоположного знака, т.е. противоионы, образуя двойной электрический слой.

Двойной электрический слой на поверхности коллоидных частиц включает так называемый адсорбционный слой и диффузный слой. Адсорбционный слой образован частью противоионов, которые прочно связаны с ядром мицеллы электростатическими силами (притягивание разноименных зарядов) и адсорбционными силами. Остальные противоионы, благодаря тепловому движению и взаимному отталкиванию, уходят на некоторое расстояние от межфазной границы, образуя диффузный слой ионов, который удерживается у поверхности только электростатическими силами (см. рис.10.1).


Рис. 10.1. Строение мицеллы и двойного электрического слоя.

 

Каждая точка электрического поля двойного слоя, образованного потенциалопределяющими ионами и противоионами, характеризуется определенным значением электрического потенциала. Причем в адсорбционном слое, т.е. на малых расстояниях от поверхности, падение потенциала происходит круто, а далее в диффузном слое более полого.

Наличие заряда у частиц можно обнаружить, помещая коллоидный раствор в постоянное электрическое поле. При этом ядро мицеллы вместе с прочно адсорбированными на нем противоионами движется к одному из электродов, а остальные противоионы перемещаются к другому электроду. Знак заряда частиц легко определить по тому, к какому из электродов они направляются.

Электрофорез – движение заряженных коллоидных частиц в электрическом поле.

Скорость электрофореза зависит от потенциала на границе скольжения, разделяющей две перемещающиеся друг относительно друга части мицеллы.

Потенциал двойного слоя, отвечающий границе скольжения при движении дисперсной фазы и дисперсионной среды относительно друг друга, называется электрокинетическим или x-потенциалом (дзета-потенциалом). Место границы скольжения определяется действием адсорбционных и электрических сил, а также свойствами раствора, окружающего частицы, в частности, вязкостью прилегающих слоев жидкости. Граница скольжения может совпадать с границей между адсорбционными и диффузным слоями или находиться несколько дальше от поверхности, где-то в диффузном слое.

Дзета-потенциал является важной характеристикой коллоидных систем. Во многих случаях отмечается закономерность: чем больше величина x-потенциала, тем выше устойчивость золя. При значениях x-потенциала ниже 0,03 В (критический потенциал) наступает коагуляция золя.

Электрофорез находит широкое применение в медико-биологических исследованиях. В клинической практике электрофоретические методы применяются для диагностики многих заболеваний, для разделения аминокислот, нуклеиновых кислот, антибиотиков, ферментов, антител, для определения чистоты белковых препаратов и т.д.

Цель работы.

1. Определить знак заряда коллоидных частиц золя гидроксида железа (III).

2. Вычислить величину электрокинетического потенциала (дзета-потенциала).




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 3290; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.