Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Высокочастотная часть защиты




а) Канал токов высокой частоты

Высокочастотным (в. ч.) каналом называют путь, по которому замыкаются токи высокой частоты, используемые для блокировки защиты.

На рис. 12-3 показан в. ч. канал по схеме фаза — земля, при которой ток высокой частоты передается по одному из проводов линии и возвращается по земле.

На каждом конце линии устанавли­вается в. ч. пост 1, состоящий из передатчика ГВЧ, генерирующего токи высокой частоты, и принимающего их приемника ПВЧ. Вы­ходная цепь в. ч. поста подключается одним зажимом к земле, а вторым — к линии электропередачи через кабель 2, фильтр присо­единения 3 и конденсатор связи 4. По концам провода линии, используемого для передачи токов высокой частоты, устанавли­ваются заградители 5, запирающие выход токами высокой частоты за пределы линии.

Второй способ передачи высокочастотных сигналов по схеме «фаза — фаза» с использованием двух проводов линии требует больше аппаратуры и в Советском Союзе не применяется.

Часть энергии, генерируемой передатчиком, теряется в элемен­тах канала, т. е. в кабеле, фильтрах присоединения, конденсаторах связи, проводах линии высокого напряжения, и уходит через за­градители. Поэтому в. ч. передатчик должен с некоторым запасом перекрывать потери в канале, обеспечивая достаточный уровень мощности в. ч. сигнала, поступающего на приемник противоположного конца. Потери энергии, происходящие при пе­редаче в. ч. сигнала   где Рвх — мощность на входе рассматриваемого элемента канала (в начале элемента); Рвых — мощность, получаемая на его выходе (в конце элемента). За единицу затухания принимается непер (Нп). Затухание каналов в. ч. защиты в зависимости от протяженности линии высо­кого напряжения колеблется от 1 до 2 Нп.  

 

б) Высокочастотный пост

Для в. ч. защит линий НО и 220 кВ отечественной промышленностью выпускаются в. ч. посты типа ПВЗК1Л-581 на электронных лампах и посты на полупроводниках. Для линий 330—500 кВ, имеющих большое затухание и более высокий уровень помех, выпускаются посты с повышенной мощностью типа ПВЗД на электронных лампах, разработаны посты на полупроводниках типа ПВЗП [Л. 55, 57]. Каждый в. ч. пост (рис. 12-5) со­стоит из передатчика и приемника.

 

Задающий генератор передатчика ЗГ является источником тока высокой частоты. Он (рис. 12-6) вы­ полнен по индуктивной трехточечной схеме с квар­цевым резонатором, обеспечивающим стабилизацию частоты (на рис. 12-6 не показан), и находится в режиме непрерывной работы. Мощность задаю­щего генератора очень мала, поэтому устанавливаются промежуточный каскад УВЧ, являющийся усилителем напряжения, и усилитель мощности УМ. Линейный фильтр ЛФ служит для повышения входного сопротивления на частотах, отличных от рабочей частоты данного канала.

 

 

Пуск передатчика осуществляется подачей плюса постоянного тока на аноды и экранные сетки ламп усилителя мощности, а останов — подачей минуса на пентодную сетку лампы генератора. Управление передатчиком производится от релейной части защиты (реле РУ). Входной сигнал, полу­чаемый приемником, усиливается с помощью УВЧ, выпрямляется детектором Д и затем после усиления усилителем постоянного тока УПТ поступает в блокирующее реле БР релейной части защиты.

Передатчик поста с повышенной мощностью в отличие от показанного на рис. 12-5 имеет дополнительный блок усиления.

Все приемопередатчики рассчитаны на работу в диапазоне частот от 40 до 300 кГц. Генератор и приемник настраиваются на одну частоту.

Передатчики ПВЗК и ПВЗП имеют выходную мощность около 10 Вт при частоте 100 кГц и около 3—5 Вт при частоте 300 кГц. У передатчика ПВЗД отдаваемая мощность не менее 600 Вт.

в) Элементы высокочастотного канала

 

 

Высокочастотный кабель 2 (рис. 12-3). а качестве в. ч. кабеля используется кабель типа ФКБ, который является одножильным кордельным кабелем со свинцовой оболочкой и броней из стальной ленты. Входное сопротивление кабеля близко к 100 Ом, затухание 0,2 Нп на 1 км при частоте 100 кГц.

Фильтр присоединения 3 (рис. 12-3) согласовывает (уравнивает) входное сопротивление кабеля с входным сопротивлением линии, соединяет нижнюю обкладку конденсатора связи с землей, образуя, таким образом, замкнутый контур для токов высокой частоты, и компенси­рует емкость конденсатора связи, что позволяет уменьшить до минимума сопротивление конденсатора для токов высокой частоты.

Фильтр присоединения представляет собой воздушный трансформатор с отпайками, позволяющими менять самоиндукцию его обмоток и взаимную индукцию между ними. В цепи обмотки L1 включен конденсатор связи С, а в цепи обмотки L2 — конденсатор С2 фильтра. Фильтр присоединения сво­бодно пропускает токи только в определенном рабочем диапазоне частот. При этих частотах затухание фильтра относительно мало (порядка 0,15— 0,25 Нп), а за пределами рабо­чих частот резко возрастает. Фильтр присоединения ОФП-4, выпускаемый отечественной промышленностью, выполняет­ся на три диапазона, охваты­вающие частоты 50—300 кГц. Для линий 500 кВ выпускает­ся фильтр ОКФП-500, рассчи­танный на работу с конденса­тором емкостью 525 пФ.

Параллельно обмотке L1 фильтра включается разрядник Р. При пробое конденса­тора связи при перекрытии его изоляции разрядник срабатывает и создает надежный путь для отвода в землю токов к. з.

Заградитель 5 (рис. 12-3) преграждает выход токов высокой частоты за пределы линии. Сопротивление заградителя zзагр зависит от ча­стоты f. Для токов высокой частоты, передаваемых по данному каналу, zзагр велико, а для токов промышленной частоты (50 Гц) оно очень мало.

 

 

Заградитель представляет собой резонансный контур (рис силовой индуктивной. 12-7, а), настроенный на определенную частоту — частоту в. ч. поста; он состоит из силовой индуктивной катушки Lк и элемента на­стройки, выполненного в виде регулируемой ем­кости С.;

Величина С подбирается так, чтобы контур заградителя был настроен в резонанс (тока) на заданную частоту fр, т. е. чтобы ωLk = 1/ωС. Такой заградитель называется резонанс­ным или одночастотным. При резо­нансной частоте сопротивление контура имеет максимальное значение (рис. 12-8) и носит актив­ный характер.

Резонансное сопротивление заградителя должно быть не меньше 1000 Ом. Для защиты конденсатора С от грозовых и коммутационных перенапряжений устанавливается разрядник Р.

Силовая катушка заградителя рассчитывается на прохождение рабочих токов нагрузки и тока к. з. Выпускаемые отечественной промышленностью заградители КЗ-500 рассчитаны на рабочий ток 700 А с пределами настройки 50—300 кГц. Кроме резонансных, применяются широкополосные загради­тели (рис. 12-7, б и 12-8), запирающие токи в довольно широком диапазоне частот f1— f 2. Такие заградители нужны для каналов, по которым одновре­менно передается несколько сигналов с разными частотами.
12-4. НАПРАВЛЕННАЯ ЗАЩИТА С ВЫСОКОЧАСТОТНОЙ БЛОКИРОВКОЙ

а) Основные элементы защиты

Упрощенная схема, поясняющая принцип выполнения и дейст­вия направленных в. ч. защит, показана на рис. 12-9. Защита со­стоит из трех основных элементов: пускового органа, органа на­правления мощности и блокирующего реле Б.

Пусковой орган защиты выполняется при помощи двух комплектов реле, один из которых (реле П2) пускает передатчик высокочастотного поста, а второй (реле П1) управляет цепью отклю­чения защиты. Для пуска защиты при междуфазных к. з. при­меняются токовые реле, включенные на ток фазы, а в случае не­достаточной их чувствительности — реле сопротивления. Пуск защит в комплектах от замыканий на землю обычно осуществляется посредством реле, реагирующих на ток нулевой последовательно­сти. В некоторых схемах для пуска защит используется реле тока и напряжения обратной последовательности.

Орган направления мощности М осущест­вляется посредством обычных реле мощности.

В защитах, реагирующих на междуфазные к. з., к реле мощно­сти подводятся ток и напряжение сети по известным схемам (в боль­шинстве случаев по 90-градусной).

В комплектах от замыканий на землю реле мощности вклю­чается на ток и напряжение нулевой последовательности. В защи­тах от несимметричных к. з. реле мощности питается током и на­пряжением обратной последовательности.

Реле мощности замыкает свои контакты при мощности к. з., направленной от шин в линию; срабатывая, оно останавливает передатчик (при помощи реле ПР), подает ток в рабочую обмотку блокирующего реле Б и замыкает цепь отключения защиты. При направлении мощности к шинам реле М не действует и разрешает пуск передатчика. Реле мощности, реагирующее на Sо и S2, дейст­вуют при обратных направлениях мощности.

Блокирующее реле Б управляется током высокой ча­стоты. При наличии высокочастотного сигнала блокирующее реле размыкает цепь отключения, не позволяя защите действовать. В ка­честве блокирующего реле обычно используется поляризованное реле с двумя обмотками — рабочей и тормозной. Ра­бочая обмотка получает питание при срабатывании реле мощности и действуют на замыкание контактов поляризованного реле. Тор­мозная обмотка питается выпрямленным током высокой частоты, получаемым из анодной цепи приемника, и действует на размыка­ние контактов реле. При одновременном питании рабочей и тормоз­ной обмоток реле не действует, так как тормозной момент преобла­дает над рабочим.

б) Работа защиты в различных режимах

При внешнем к.з. на обоих концах линии срабатывают пусковые реле П1 и П2. Они пускают передатчики и подают плюс к контактам реле мощности М. На питающем конце линии, где мощность к. з. направлена от шин в линию, реле мощности сраба­тывает, останавливает передатчик своего комплекта, подает плюс к контактам блокирующего реле Б и ток в его рабочую обмотку, подготавливая, таким образом, защиту к действию. Однако цепь отключения защиты остается разомкнутой контактами блокирую­щего реле, в тормозную обмотку которого поступает блокирующий ток с противоположного конца линии. На противоположном (ближ­нем к месту повреждения) конце линии мощность к. з. направлена к шинам, поэтому реле мощности на этом конце линии не действует, разрешая реле П2 запустить передатчик, который посылает блоки­рующий ток высокой частоты. Этот ток, принятый и выпрямленный приемниками обоих постов, поступает в тормозные обмотки блоки­рующих реле Б и не позволяет им действовать. Благодаря этому предотвращается срабатывание защиты на питающем конце линии и дополнительно осуществляется блокировка защиты на приемном конце линии, цепь отключения которой уже разомкнута контак­тами реле мощности. Таким образом, при внешнем к. з. блокирую­щий высокочастотный импульс посылается только с того конца линии, где контакты реле мощности разомкнуты, что и обеспечи­вает селективность защиты.

При к. з. в зоне и двустороннем питании места поврежде­ния мощность к. з. на обоих концах линии направлена от шин в линию. В обоих комплектах защиты срабатывают пусковые реле П1 и П2 и реле мощности М. Реле мощности размыкают при помощи промежуточного реле ПР цепь пуска в. ч. поста. Вследствие без­действия обоих передатчиков ток высокой частоты отсутствует и блокирующие реле срабатывают, разрешая защите произвести от­ключение линии.

При качаниях, обычно сопровождающихся возраста­нием тока и снижением напряжения, пусковые реле тока и сопро­тивления могут приходить в действие. Поэтому поведение защиты в этих условиях будет зависеть от поведения реле мощности, кото­рое зависит от положения точки электрического центра качаний. Если последний окажется в пределах защищаемой линии (см. §13-2), то знаки мощности по ее концам будут положительными (т. е. на­правленными от шин в линию). В этом случае защита подействует неправильно и отключит линию. На всех остальных участках сети, где электрический центр расположен вне линии, направления мощности по их концам будут различными и защита будет блокиро­ваться, как и в условиях внешних к. з.

Для предотвращения неправильных отключений применяется специальная блокировка, запрещающая работать защите при кача­ниях (см. § 13-3).

Пусковые реле, реагирующие на составляющие нулевой или обратной последовательностей, при качаниях, возникающих в сим­метричном режиме, не действуют, поэтому для таких защит блоки­ровок от качаний не требуется.

в) Особенности пускового органа защиты

Из принципа действия защиты и работы схемы следует, что непременным условием правильной работы защиты при внешних к. з. является пуск высокочастотного передатчика на ближнем к месту к. з. (т. е. приемном) конце линии. При несогласованной чувствительности пусковых реле на противоположных концах ли­нии это условие может быть нарушено. Так, например, если при внешнем к. з. реле П2 (рис. 12-9), пускающее в. ч. передатчик на приемном конце линии, не сработает из-за недостаточной чув­ствительности, а реле П1, пускающее защиту на питающей стороне линии, окажется более чувствительным и подействует, то защита на питающем конце неправильно отключит линию из-за отсутствия блокирующего сигнала с приемного конца.

Для исключения этого пусковой орган выполняется из двух комплектов реле: одного — П2 для пуска высокочастотной части и второгоП1 в цепи отключения. При этом реле П2 должно быть в 1,5—2 раза чувствительнее реле П1 на своем и противопо­ложном концах линии. При выполнении этого условия имеется полная гарантия, что более чувствительные реле П2 обеспечат пуск в. ч. передатчика, если пришли в действие более грубые пусковые реле П1 в цепи отключения. Такой принцип пуска предусмотрен в схеме, показанной на рис. 12-9.

Имеется и второй способ, при котором пусковой орган состоит из одного комплекта, управляющего как высокочас­тотной, так и релейной частями защиты. В этом случае пусковые реле на каждом конце линии пускают в. ч. пост своего комплекта и одновременно осуществляют пуск поста на противоположной стороне линии. Такой принцип пуска получил название д и с т а н ц и онного; схема его выполнения рассматривается в § 12-5.

При дистанционном пуске несогласованность в чувствительно­сти пусковых реле на любом конце линии не представляет опасно­сти, так как при работе одного пускового реле запускаются оба поста и блокирующий импульс с приемного конца линии будет, таким образом, обеспечен, даже если установленное там пусковое реле не подействует.

Уставки пусковых реле. Оба пусковых комплекта реле П1 и П2 должны быть отстроены от максимальной нагрузки если они на нее реагируют) и надежно действовать при к. з. на противоположном конце защищаемой линии. Токовые реле отстраиваются от нагрузки по формуле


ареле сопротивления — по формуле

 

 

при φр = φнагр. В обоих случаях кн > 1.

Исходя из этого уставка пусковых реле П2, пускающих в. ч. передатчик, выбирается по выражению (12-2) или (12-3), а уставки пусковых реле П1, управляющих цепью отключения, принимаются в 1,5—2 раза грубее уставок на П2 по соображениям, приведенным выше.

Чувствительность реле, управляющих отключением, прове­ряется по к. з. на противоположном конце линии, коэффициент чувствительности должен быть в худшем случае не меньше 1,5—2.

По принципу своего действия защита не реагирует на пере­грузки, поскольку в этом режиме мощности по концам линии имеют разные направления, так же как и при внешнем к. з. Поэтому для повышения чувствительности можно не считаться с малове­роятными или кратковременными перегрузками (например, то­ками самозапуска и т. п.) и отстраивать реле П2 от нормальной нагрузки. При этом пусковые реле П1, управляющие цепью отклю­чения, должны быть отстроены от максимальной нагрузки.

Реле, питающиеся от фильтра тока или напряжения нулевой и обратной последовательностей, на нагрузку не реагируют, но их необходимо отстраивать от небаланса, возможного в условиях нагрузки. Величину небаланса оценивают на основании данных опыта и проверяют непосредственным измерением при включении защиты.

г) Контроль исправности высокочастотного канала и приемо­передатчиков

Нарушение высокочастотного канала или неисправности в по­стах, в частности повреждение электронных ламп, приводят кнеправильной работе защиты при внешних к. з. В связи с этим в схеме защиты предусматривается устройство контроля за исправ­ностью высокочастотной аппаратуры. Для этой цели установлены кнопка К и миллиамперметр тА (рис. 12-9). Периодически дежур­ный персонал, нажимая кнопку К, пускает передатчик и по пока­занию миллиамперметров, установленных в выходной цепи при­емников, проверяет величину тока приема на обоих концах линии. Цепь от кнопки К заводится через контакты реле ПР, с тем чтобы проверка не препятствовала правильной работе защиты, если во время ее проведения возникает внешнее к. з. За последнее время разработаны и применяются автоматические устройства для про­верки исправности канала с пуском от часов в определенное время суток.




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 1756; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.